STaff Ad Resource MANagement
(STARMAN)

Design Document

Robert Gerard Holohan
C00003778

Olscail
Teicneclalochta
an Oirdheiscant
I U South East
Techaslogical
University

Table Of Contents

Table Of Contents 2
Table Of Figures 5
Table of Tables 7
1 Introduction 8
2 Application Architecture 9
2.1 Front-end application 9
2.2 Back-office application 10
2.3 Web services 10
24 Back-end database server 11

3 Design Pattern 11
4 UI/UX Design 12
4.1 End-user interface 12
4.1.1 Main form 12
4.1.2 View resources assigned to a user 13
4.1.3 Viewing managed resources 14
4.14 Viewing who is assigned a resource 15
4.1.5 Assign resources to a user 16
4.1.6 Reviewing requests 17
4.1.7 Reviewing activities 17

4.2 Administrator front-end 18
4.2.1 Staff administration 18
4.2.2 Resource administration interface 19
4.2.3 Operator/Resource Assignment Administration interface 19
4.2.4 Review requests 20
4.2.5 Review activities 20

5 System Flowchart 21
5.1 End-user Flowchart 21

6 System Sequence Diagrams 22
6.1 Front-end Use Cases 22
6.1.1 View Resources 22

6.1.2 View Staff 23

6.1.3 View Assignments 23

6.1.4 Grant Access 24

6.1.5 Revoke Access 24
6.1.6 Review Requests 25
6.1.7 View Activities 25

6.2 Administrator Use Cases 26

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.3
6.3.1
6.3.2
6.3.3

View Users

Add User

Remove User

View Resources

Add Resource

Remove Resource

Create Matches

Delete Matches

View Matches

Review Requests

View Activities

Back-office Use Cases

Add Member

Remove Member

Notify User

7 Database Schema

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7

7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

SQL database table creation

tblResources

tblUsers

tbIRequests

thlAuditLogs

tblDepartments

tblUserRole

tblSystemParameters

Use Case SQL statements

View Resources

View Staff

View Assignments

Grant Access

Revoke Access

Review Requests

View Activities

Administrator Use Cases

View Users

Add User

Remove User

View Resources

Add Resource

Remove Resource

26
26
27
27
28
28
29
29
30
30
31
31
31
32
32
33
34
34
35
36
37
38
39
40
41
41
41
41
41
41
42
42
42
42
42
42
42
42
43

7.3.7 Create Matches

7.3.8 Delete Matches

7.3.9 View Matches

7.3.10 Review Requests

7.3.11 View Activities

7.4 Back-office Use Cases

10

7.4.1 Add Member

7.4.2 Remove Member

7.4.3 Notify User

Class Diagram

Conclusion

Glossary of Terms

43
43
43
43
43
43
43
44
44
45
46

47

Table

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:

Of Figures

Technology Stack

Main screen after login

Display resources assigned to the selected user

View managed resources

Show staff assigned to a resource

Assign one or more resources to a user

Review requests to date

Review Activities to date

Staff administration interface

Resource Administration interface

Operator/Resource Assignment

List of Requests submitted - filter by operator

List of activities carried out by operators

Sequence Diagram - View Resources

Sequence Diagram - View Staff

Sequence Diagram - View Assignments

Sequence Diagram - Grant Access

Sequence Diagram - Revoke Access

Sequence Diagram - Review Requests

Sequence Diagram - View Activities

Administrator - View Users

Administrator - Add User

Administrator - Remove User

Administrator - View Resources

Administrator - Add Resource

Administrator - Remove Resource

Administrator - Add Matches

Administrator - Delete Matches

Administrator - View Matches

Administrator - Review Requests

Administrator - View Activities

Sequence Diagram - Add Member

Sequence Diagram - Remove Member

Sequence Diagram - Notify User

12
13
14
15
16
17
17
18
19
19
20
20
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
32

Figure 35: Database diagram
Figure 36: Class Diagram

33
45

Table of Tables

Table 1 : SQL to create tbIResources

Table 2: Data table structure - tbIResources

Table 3: SQL to create tblUsers

Table 4: Data Table Structure - tblUsers

Table 5: SQL to create tbIRequests

Table 6: Data Table Structure - tbIRequests

Table 7: SQL to create tblAuditLogs

Table 8: Data Table Structure - tblAuditLogs

Table 9: SQL to create tblDepartments

Table 10: Data Table Structure - tbIDepartments

Table 11: SQL to create tblUserRole

Table 12: Data Table Structure - tblUserRole

Table 13: SQL to create tbISystemParameters

Table 14: Data Table Structure - tbISystemParameters

34
34
35
35
36
36
37
37
38
38
39
39
40
40

1 Introduction

With the regular movement of staff within functional areas in South-East Technological University
Carlow Campus (SETUCC), the need to ensure people have timely access to IT resources becomes
more important.

At present, there is a significant dependence on the provision of services from the existing I'T support
functions. Notwithstanding the existence of a formal support ticketing system, requests for the
provision and removal of resource access do not always reach the right ears in a timely manner.

Enabling functional areas to have a level of self-sufficiency can lead to an improvement in end-user
experiences. Ensuring people have the resources they need when they need them, and, in the world of
GDPR, not having access to resources they do not need, is most important.

This system is a web application that allows specific end-users request or remove access to certain of
their own IT resources from their managed staff. Without the need for specific security rights or skills,
an end-user can use this system to control access to their IT resources from one central place.

The primary resources that are managed through this application are file storage.

This document contains technical details of the system and how it will function. Included are all
relevant architectures and data storage solutions.

2 Application Architecture

This application consists of four distinct elements:

e The front-end application, facilitating the submission and monitoring of access control
requests by authenticated users

e The back-office application that monitors and processes requests and notifies the end-user of
successful outcomes

e An SQL database to store all system-related data

e A series of web services to support the operation of both the front-end and back office
systems

Front-End Web Services/AP| Gateway Bank-Office

L I

n ’ N §5I’L5erver
ASP.NET E ASP.NET
JavaScript E
B -
o o o

Figure 1: Technology Stack

2.1 Front-end application

The front-end application will be a web-based system, developed using Microsoft C# and the NET
ASPX tool sets.

The application will consist of one main form with an Ajax Tab Container to allow the extension of
the perceived screen area. Each tab will support a different function of the system.

The web application will run on a Microsoft Internet Information Services (MIIS) platform. The site
will use HTTPS protocols, supported by a commercial 2048-bit certificate.

The front-end will use a Microsoft SQL back-end database to store all relevant information. This
database will not only store requests from the end-user but it will also be used to store system
parameters, thus supporting the tailoring of the system without the need for software development
skills. This will simplify elements of both the support and the growth of functionality of the system
over time.

All communications between the front-end and the back-end database server will be made via a web
service API. Requests will be secured using session tokens to increase security. All SQL statements
will be parameterised to reduce the risk of SQL injection attacks on the system.

User interaction with the system will be through mouse-click selections from lists. There will be no
free-text input fields on the forms, thus reducing the risk of security breaches.

Access to the website will be restricted to specific IP address ranges. The server will also only be
available within the SETU network infrastructure (either actual or virtual machines).

2.2 Back-office application

The back-office application will be a console application developed using Microsoft C#. The
application will run on a iterative loop, carrying out a series of tasks to include: -

e Add users to AD groups;
e Remove users from AD groups;
e Notify requesting end-user of successful outcome of each request;

The back-office application will run a series of parameterised SQL queries against the database, using
the web service to execute same.

One query will run to identify incomplete requests. These requests will be processed in turn, with
requests being submitted to the web service for completion. The returned result of the request will be
analysed and the relevant database record updated to reflect successful completion or an explanation
for the failure (based on the returned response).

Another query will identify completed requests for email notification. The query will group records
by end-user. This will facilitate a summary email notification being sent in the event of more than one
request existing.

The email request will be processed via the web service and a response returned. The returned result
of the request will be analysed and the relevant database record updated to reflect successful
completion or an explanation for the failure (based on the returned response).

All communications between the back-office application and the back-end database server will be
made via a web service API. Requests will be secured using session tokens to increase security. All
SQL statements will be parameterised to reduce the risk of SQL injection attacks on the system.

2.3 Web services

A set of secure web services will provide the underlying functionality to the front-end and back-office
systems. The web services will be developed using Microsoft C# and will reside on a MIIS platform.
The site will be secured using a commercial 2048-bit certificate. Access to the site will be restricted
and access to each web service will be controlled using session tokens. When a user logs into the
system, a unique session token will be generated. This token will be passed with each request from the
front-end to the web service. Invalid session tokens will result in requests being ignored. No
explanation will be given for requests that fail due to invalid session tokens.

The web service will interact with the SQL database server, the AD infrastructure and local mail
server(s) as required.

By using a web service, there is no need for the end-user to have any direct access to either the SQL
server or the AD infrastructure.

Access to the web services will be restricted to the application web server only via IP address
restrictions through MIIS.

10

2.4 Back-end database server

A Microsoft SQL server will be used to host the application database. This database will store all data
related to end-user requests. The database will also store an audit trail of all activities carried out in
the system.

The database will store details of each end-user and the resources they own. These lists will be
maintained by technical staff familiar with the operation of the system and the managed staff.

To support ease of maintenance and functionality improvements, system parameters will also be
stored in the database where possible. A secured and restricted access interface will enable technical
staff to maintain the underlying data sets as required.

3 Design Pattern

The application is designed to be a multi-user web-based tool with database and other services
provided in the background. As such, a client-server style architecture would be most appropriate.

As there are 4 distinct different elements to this application, there are different elements of design to
be considered. The web application used by the end-user is based on client-server designs. As an end-
user interacts with the application, all processing takes place on the web server, with the results being
displayed to the end-user via HTML.

The back-office application interacts with the web service platform to deliver functionality. In this
case, the back-office application is a client and the web service acts in the role of server.

In both the front-end and back-office iterations, the database server acts as a server by processing
SQL requests and delivering the resulting data to the requestor.

11

4 UI/UX Design

This application consists of two main components. The end-user front end and the back-office
application.

The front-end has two main interfaces: -

e The end-user web interface where the operator interacts with the system through a series of
web controls and buttons

e The administrator web interface where system administrators manage the underlying
supporting data sets and system parameters

The back-office is a console application with a limited interface. As the application completes an
operation, details will be displayed to the screen. These will include details of the iteration being
completed and the success/failure of each request being processed.

4.1 End-user interface

As indicated above, the web front-end has two distinct parts. The first part, referred to from here on as
the end-use interface, is the interface for all standard day-to-day usage of the system.

4.1.1 Main form

Once a user is authenticated to use the STARMAN system (Azure AD Single Sign-On and local AD
group membership), the first screen they see displays a list of all users that are managed by the
operator.

Figure 2 is a sample screenshot of what the form will look like.

STaff Ad Resource MANagement

Resources Manage Requests Activities

Managed Users
Adam Bolton
David Jones

Eddie Rocket

Fred Flintstone
Henry Ford

Figure 2: Main screen after login

12

4.1.2 View resources assigned to a user

When the operator clicks on a user in the list of Managed Users, a list of the resources assigned to the

selected user will be displayed (Figure 3). This list is for reference purposes only and allows the
operator to determine if they need to make changes to the user’s assignments.

STaff Ad Resource MANagement

Resources Manage Requests Activities

Managed Users Assigned Resources
Adam Bolton HR - Pensions

HR - Payroll

Eddie Rocket
Fred Flintstone
Henry Ford

Figure 3: Display resources assigned to the selected user

13

4.1.3 Viewing managed resources

The Resources tab on the form bring up a list of resources that the operator manages (Figure 4). This
list is in alphabetical order.

STaff Ad Resource MANagement

Manage Requests Activities

Managed Resources
Admissions

Estates

Finance - Procurement
Finance - Student Fees
HR - Pensions

HR - Payroll

HR - Recruitment

Figure 4: View managed resources

14

4.1.4 Viewing who is assigned a resource

When viewing the list of resources on the Resources tab, the operator can click on a specific resource
to see who is assigned access (Figure 5). This is for reference purposes only.

STaff Ad Resource MANagement

Staff Resources Manage Requests Activities

Managed Resources Assigned Staff

Admissions David Jones
Estates Fred Flintstone
Finance - Procurement Henry Ford
Finance - Student Fees
HR - Pensions

HR - Payroll

HR - Recruitment

Figure 5: Show staff assigned to a resource

15

4.1.5 Assign resources to a user

Access to a resource for a user can be added or removed. Click on the Manage tab bring up the screen

to do this (Figure 6).

To assign or revoke a resource, the operator selects a user in the list. Next, the operator selects one or
more resources from the list (ctrl-click to select multiple resources).

The request is submitted by clicking the Add or Remove button as appropriate.

STaff Ad Resource MANagement

Staff Resources Manage Requests Activities

Managed Users Managed Resources

Adam Bolton

Admissions

Estates

Eddie Rocket
Fred Flintstone
Henry Ford

Finance - Procurement
Finance - Student Fees
HR - Pensions

HR - Payroll

HR - Recruitment

Remove

Figure 6: Assign one or more resources to a user

16

4.1.6 Reviewing requests

At any time, the operator can review a list of requests they have submitted to date.

Clicking on the Requests tab brings up a list of requests in date order (Figure 7). Details of the request
and whether is has been completed or not are displayed.

STaff Ad Resource MANagement

Staff Resources Manage Requests Activities

Reqguest Date Request Details Date Completed
Assign 'Eddie Rocket' to 'HR - Pensions' 10/01/2023 10:16:04
10/01/2023 10:03:24 | Assign 'Eddie Rocket' to 'HR - Payroll 10/01/2023 10:16:05
12/02/2023 09:23:34 Assign 'Fred Flintstone' to "HR - Payroll' 12/02/2023 09:32:05
12/02/2023 09:24:28 Remove 'Eddie Rocket' from 'HR - Payroll' 12/02/2023 09:32:07

Figure 7: Review requests to date

4.1.7 Reviewing activities

At any time, the operator can view a list of their activities to date (Figure 8). This list is in date order
and displays the date and time of the activity and a description of the activity itself.

STaff Ad Resource MANagement

Staff Resources Manage Requests Activities

Date Activity Details

04/01/2023 09:11:44 View User - 'Adam Bolton"

10/01/2023 10:01:44 Assign 'Eddie Rocket'to 'HR - Pensions’
10/01/2023 10:03:24 Assign 'Eddie Rocket'to 'HR - Payroll
11/01/2023 13:33:24 View User - 'Eddie Rocket'

12/02/2023 09:23:34 Assign ‘Fred Flintstone' to 'HR - Payroll

12/02/2023 09:24:28 Remove 'Eddie Rocket' from 'HR - Payroll

15/03/2023 10:03:24 View Resource - 'Finance - Procurement'
18/04/2023 12:103:28 View Resource - 'HR - Payroll

Figure 8: Review Activities to date

17

4.2 Administrator front-end

As outlined earlier, the software system will require a level of administration from time to time. The
following are the provisional designs from the Administrator interface.

4.2.1 Staff administration

This screen has two main features. Firstly, it allows the administrator to add or remove operators from
the system. Adding an operator is done by selecting a user from the tree populated from AD.
Removing an operator involves selecting the operator from the list and clicking the Remove button.

Removing an operator will normally only happen when the operator change’s role. In this case, the
operator will be disabled within the system and any roles they manage will be retained.

Secondly, the administrator will be able to manage the list of staff managed by an operator. To do so,

the administrator will select the relevant operator and then use the Add/Remove Staff buttons to carry
out the relevant operations.

Figure 9 shows the Staff Administration interface for STARMAN.

STaff Ad Resource MANagement - Administration

| Staff : Resources Assignments Requests Activities

Operators Managed Staff AD Users

Bud Abbot Adam Bolton @ SETU - Carlow Add Operator
Charlie Chaplin David Jones

Daniel Boone Eddie Rocket
Ken Barlow Fred Flintstone
Lou Costello Henry Ford
Stan Laurel Add Staff

Remove Staff

Figure 9: Staff administration interface

18

4.2.2 Resource administration interface

This interface allows the administrator to manage all resources within STARMAN. A list of existing
resources is displayed and additional resources can be selected from the tree. To remove a resource,

the administrator selects the resource from the Managed Resources list and clicks the Remove
Resource button.

Figure 10 shows the Resource Administration interface.

STaff Ad Resource MANagement - Administration

Staff [RESOUrces | Assignments Requests Activities

Ri ADR
Admissions =-SETU - Carlow Add Resource
Estates
Finance - Procurement
Finance - Student Fees
Remove Resource
HR - Pensions

HR - Payroll
HR - Recruitment

Figure 10: Resource Administration interface

4.2.3 Operator/Resource Assignment Administration interface

This interface provides the functionality to enable the operator to maintain the resources each operator
manages (Figure 11). The administrator selects an operator from the list. The resources managed by

the operator are listed. The administrator can then select a resource from the list and release if from
the operator.

STaff Ad Resource MANagement - Administration

Staff Resources |Assignments | Requests Activities

Operators ged R AllR

Bud Abbot HR - Pensions Admissions Assign
Charlie Chaplin HR - Payroll Estates
Daniel Boone HR - Recruitment Finance - Procurement

Ken Barlow Finance - Student Fees Release
Lou Costella

Stan Laurel

Figure 11: Operator/Resource Assignment

19

4.2.4 Review requests

This interface allows the administrator to review all requests made by operators. The list can be
filtered by clicking on one or more operators from the list. Figure 12 shows the interface.

4 Operator

Operators
Bud Abbot
Charlie Chaplin
Daniel Boone
Ken Barlow
Lou Costello
Stan Laurel

Staff Resources Assignments Requests Activities

STaff Ad Resource MANagement - Administration

Operator Request

3 Bud Abbot 10/01/2023
Bud Abbot 10/01/2023
Charlie Chaplin 12/02/2023 ...
Charlie Chaplin 12/02/2023 ...
Lou Costello 12/02/2023 ...

Request Details Done

- | Assign 'Eddie Rocket' to 'HR - Pensions’ Yes

- | Assign 'Eddie Rocket' to 'HR - Recruitment’ Yes
Assign 'Fred Flintstone' to 'Finance - Procurement’ Yes
Assign 'Fred Flintstone' to 'Finance - Student Fees' Yes
Remove 'Eddie Rocket' from 'HR - Payroll' Yes

Date
Completed

10/01/2023 .
10/01/2023 .
12/02/2023 ...
12/02/2023 ...
12/02/2023

Figure 12: List of Requests submitted - filter by operator

4.2.5 Review activities

Using this interface, the administrator can review all activities completed within the system. The list

can be filtered by selecting one or more Operators from the list. Figure 13 shows the interface.

Operators
Bud Abbot
Charlie Chaplin
Daniel Boone
Ken Barlow
Lou Costello
Stan Laurel

Staff Resources Assignments Requests |Activities

STaff Ad Resource MANagement - Administration

Operator Date

> Bud Abbot 04/01/2023
Charlie Chaplin 10/01/2023 _
Charlie Chaplin 10/01/2023 _
Ken Barlow 11/01/2023 ...
Ken Barlow 12/02/2023
Daniel Boone 12/02/2023 .
Stan Laurel 15/03/2023 ..
Stan Laurel 18/04/2023

Activity Details

- |View User - 'Adam Bolton'

Assign 'Eddie Rocket' to 'HR - Pensions'
Assign 'Eddie Rocket' to 'HR - Payroll'
View User - 'Eddie Rocket!

Assign 'Fred Flintstone' to 'HR - Payroll'
Remove 'Eddie Rocket' from 'HR - Payroll
View Resource - 'Finance - Procurement’
View Resource - 'HR - Payroll

Figure 13: List of activities carried out by operators

20

5 System Flowchart

The application has a series of functions. This section of the document will outline each function by
means of a flowchart.

5.1 End-user Flowchart

Launch
System

1
[T T T T T 1
View : View Revoke Review View

21

6 System Sequence Diagrams

Based on the Use Cases outlined in the Functional Specification for the application, the following are
the System Sequence Diagrams (SSD) for the application.

6.1 Front-end Use Cases

6.1.1 View Resources

A

End-User

Web Service

viewResources(userName)

getResources(userName)

Database

listOfResources

Figure 14: Sequence Diagram - View Resources

22

6.1.2 View Staff

viewStaffluserName)

listOfStaff

End-User Web Service Active Directory

getStaffList(userName)

Figure 15: Sequence Diagram - View Staff

6.1.3 View Assignments

viewAssignments(resType. resName

listOfAssignments

End-User Web Service Active Directory

getAssignments(resType, resName)

Figure 16: Sequence Diagram - View Assignments

23

6.1.4 Grant Access

End-User

grantAccess(user, resType, resNamey |
Ll

Web Servi
bl Database

<

response

grantAccess(user, resType, resName)

Figure 17: Sequence Diagram - Grant Access

6.1.5 Revoke Access

End-User

revokeAccess(user, resType, resNam

Web Servi
hmeties Database

response

revokeAccess(user, resType, resName)

Figure 18: Sequence Diagram - Revoke Access

24

6.1.6 Review Requests

X

e [y savee | paase |

reviewRequests(userName)

getRequests{userName)

listOfRequests

Figure 19: Sequence Diagram - Review Requests

6.1.7 View Activities

X

e [t s | Bt |

viewActivities{userName)

getActivities(userName)

listOfActivities

Figure 20: Sequence Diagram - View Activities

25

6.2 Administrator Use Cases

6.2.1 View Users

A

Administrator Wieh Service Database

viewUsers()

getUsers()

listOfUsers

Figure 21: Administrator - View Users

6.2.2 Add User

Back Office Web Service Database

getRequests(success=0,type=Add)

getRequests(success=0.type=Add)

I
I
|
|
;
|
|
|
I
i
|
|
|
|
- listOfRgquests
}
I
I
|

log

{userName,resType resName)

returnResult

updateRequest{reqlD,result success)

updateRequest(reqglD.result success)

Figure 22: Administrator - Add User

6.2.3 Remove User

getRequests(success=0,type=Remove)

Back Office Web Service Database

getRequests(success=0, type=Remove)

listOfRg¢

tquests

A

loa

removeMember{userName, resType,resNam

returnResult

updateRequest{reqlID,result success)

updateRequest{reqlD,result success)

Figure 23: Administrator - Remove User

6.2.4 View Resources

viewResources()

Administrator Wab Setvice Database

getResources()

listOfResources

Figure 24: Administrator - View Resources

27

6.2.5 Add Resource

X

addResource(resType, resName)

Administrator Web Sarvice Database

addResource(resType, resName)

response

i

Figure 25: Administrator - Add Resource

6.2.6 Remove Resource

removeResource(resName)

Web S
Administrator AR el Database

ramoveResource(resName)

|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
k response
|
I
|
|
|
I
|
I
|
|
|
|
|
|
|
I
|
I
|
|
|

Figure 26: Administrator - Remove Resource

28

6.2.7 Create Matches

A

Administrator

Web Service

Database

|

I

I

1 getResource()

|

; getResource()
|

I

I

! listOfResources

f

|

|

|

| getUsers()

I

I

| getUsers()
|

|

L< .o, .. S
|

|

|

I

I addMatch()

T

|

} addMatch()
|

|

I

|

I

|

|

|

Figure 27: Administrator - Add Matches

6.2.8 Delete Matches

A

Administrator

deleteMatch()

Web Service

deleteMatch()

Database

Figure 28: Administrator - Delete Matches

29

6.2.9 View Matches

X

Administrator

viewMatches()

Web Service

listOMatches

getMatches()

Database

Figure 29: Administrator - View Matches

6.2.10 Review Requests

A

Administrator

reviewRequests()

Web Service

listOfRequests

getRequests()

Database

Figure 30: Administrator - Review Requests

30

6.2.11 View Activities

X

Administrator

viewActivities()

listOfActivities

getActivities()

Figure 31: Administrator - View Activities

6.3 Back-office Use Cases

6.3.1 Add Member

Back Office

Web Service Database

getRequests(success=0.type=Add)

getRequests(success=0,type=Add)

listOfRg

yquests

|
|
|
|
b
|
|
|
|
|
|
|
|
|
&
N
|
|
|

loo|

addMember(userName, resType,resName)

returnResult

A

updateRequest{reglD,result success)

updateRequest{reqlD.result success)

Figure 32: Sequence Diagram - Add Member

31

6.3.2 Remove Member

Back Office Web Service Database

getRequests(success=0,type=Remove)

getRequests(success=0, type=Remove)

listOfRgquests

A

loo|

removeMember{userName,resType,resNam

returnResult

updateRequesi(reqlD,result success)

updateRequest{reqlD,result success)

Figure 33: Sequence Diagram - Remove Member

6.3.3 Notify User

Back Office Web Service Database

getRequests(success=1,notify=0)

getRequests{success=1. notify=0)

listOfR¢quests

|
|
|
|
t
|
|
|
|
|
|
|
|
|
'€
N
|
|
|

loo|

sendEmail(emailAddress, requests)

returnResult

A

updateRequest{reqlD,result,notify)

updateRequest(reqlD, result,notify)

Figure 34: Sequence Diagram - Notify User

7 Database Schema

All data associated with the application is stored in a Microsoft SQL (MSQL) database. The
application will access the data through a series of SQL statements. To reduce the risk of SQL
injection attacks, all SQL statements will be parameterised. Each statement will be executed via the

web service and will require a valid session token to be processed.

The following diagram shows the database schema, including the relationships between the various

tables.

tblUserRole
% rolelD

roleTitle

tblUsers
7 userlD

userMame

deptiD
rolelD

emailfddress

‘%
tblDepartments
¥ deptiD
depthlame
deptianager

paramlD

paramOrder
¥ paramGroup
¥ paramName

paramValue

tblAuditLogs
T loglD
logDateTime
wseriD
request!D

logComment

tblRequests
requestiD
requestDateTime
userlD
resgurcell
success
emailed

reqComment

8

|
%

tblResources
¥ resourcelD
resType
resName

owner

Figure 35: Database diagram

33

7.1 SQL database table creation

This section of the document describes the database tables outlined in Figure 35 and outlines the SQL
statements required to create them.

7.1.1 tblResources

This table stores a full list of all resources that can be managed by the application user. One record
exists for each managed resource. Each resource record has a unique GUID field. This field will be
used to associate the resource with other tables where relevant.

Table 1 : SOL to create tblResources

CREATE TABLE [dbo].[tbIResources](
[resourcelD] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[resType] [varchar](30) NOT NULL,
[resName] [varchar](100) NOT NULL,
[owner] [varchar](100) NOT NULL,
CONSTRAINT [PK tbIResources] PRIMARY KEY CLUSTERED

(

[resourcelD] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY =
OFF, ALLOW_ROW_LOCKS =ON, ALLOW_PAGE_LOCKS = ON,
OPTIMIZE FOR SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Table 2: Data table structure - tbIResources

Field Name Field Type Default Value Key Field

resourcelD uniqueidentifier New GUID

resType varchar(30) Umque
resName varchar(100) Unique
Owner varchar(100)

34

7.1.2 tblUsers

This table stores a list of all authorised users for the system. This table allows the application to
identify what department the user is associated with and what role the perform within the application.
One record exists for each user of the application. Each user record contains a unique ID, used to
reference the user in all relevant tables.

Table 3: SQL to create tblUsers

CREATE TABLE [dbo].[tblUsers](
[userID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[userName] [varchar](100) NOT NULL,
[deptID] [uniqueidentifier] NOT NULL,
[roleID] [uniqueidentifier] NOT NULL,
[emailAddress] [varchar](100) NOT NULL,
CONSTRAINT [PK_tblUsers] PRIMARY KEY CLUSTERED

(

[userID] ASC
)WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY =
OFF, ALLOW_ROW_LOCKS =ON, ALLOW_PAGE LOCKS = ON,
OPTIMIZE FOR SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Table 4: Data Table Structure - tblUsers

Field Name Field Type Default Value Key Field

userlD uniqueidentifier New GUID

userName varchar(100) Unlque
department | varchar(100)

rolelD varchar(100)

emailAddress @ varchar(100)

7.1.3 tbIRequests

This table stores details of all requests made using the application. One record exists for each request
made. Each record contains a unique ID, used to reference the request in all relevant tables.

Table 5: SQOL to create tblRequests

CREATE TABLE [dbo].[tbIRequests](
[requestID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[requestDateTime] [datetime] NOT NULL,
[requestType] [varchar(6)] NOT NULL,
[userID] [uniqueidentifier] NOT NULL,
[resourcelD] [uniqueidentifier] NOT NULL,
[success] [bit] NOT NULL,
[emailed] [bit] NOT NULL,
[reqComment] [varchar](max) NULL
) ON [PRIMARY] TEXTIMAGE ON [PRIMARY]

Table 6: Data Table Structure - tblRequests

Field Name Field Type Default Value Key Field

requestiD uniqueidentifier New GUID Yes
requestDateTime DateTime GetDate()
requestType Varchar(6)

userlD uniqueidentifier

resourcelD uniqueidentifier

success Bit 0
emailed Bit 0
reqComment varchar(MAX)

36

7.1.4 tblAuditLogs

This table stores details of all operations carried out by users and operators. This acts as an audit trail

of the system. Each record contains a unique ID.

Table 7: SOL to create tblAuditLogs

CREATE TABLE [dbo].[tblAuditLogs](
[logID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[logDateTime] [datetime] NOT NULL,
[userID] [uniqueidentifier] NOT NULL,
[requestID] [uniqueidentifier] NOT NULL,
[logComment] [varchar](max) NULL,
CONSTRAINT [PK _tblAuditLogs] PRIMARY KEY CLUSTERED

(

[logID] ASC
JWITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY =
OFF, ALLOW_ROW_LOCKS =ON, ALLOW_PAGE LOCKS = ON,
OPTIMIZE FOR SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE ON [PRIMARY]

Table 8: Data Table Structure - thlAuditLogs

Field Name Field Type Default Value Key Field

logID uniqueidentifier New GUID
logDateTime | DateTime GetDate()
useriD uniqueidentifier
requestiD uniqueidentifier

logComment | varchar(MAX)

37

7.1.5 tblDepartments

This table stores details of all the departments of the users. There is one record per department. Each

record contains a unique ID, used to reference the department in all relevant tables.

Table 9: SQOL to create tblDepartments

CREATE TABLE [dbo].[tb]Departments](
[deptID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[deptName] [varchar](100) NOT NULL,
[deptManager] [uniqueidentifier] NOT NULL,
CONSTRAINT [PK_tblDepartments] PRIMARY KEY CLUSTERED

(

[deptID] ASC
YWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON,
OPTIMIZE FOR SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Table 10: Data Table Structure - tblDepartments

Field Name Field Type Default Value Key Field

deptID uniqueidentifier New GUID
deptName varchar(100)
deptManager uniqueidentifier

38

7.1.6 tblUserRole

This table stores details of all the user roles within the application. There is one record per user role.

The role of the user determines what experience they have when using the system. Each record
contains a unique ID, used to reference the user role in all relevant tables.

Table 11: SQL to create thlUserRole

CREATE TABLE [dbo].[tblUserRole](
[roleID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[roleTitle] [varchar](100) NOT NULL,

CONSTRAINT [PK tblUserRole] PRIMARY KEY CLUSTERED

(
[roleID] ASC
YWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS =ON, ALLOW_PAGE LOCKS = ON,
OPTIMIZE FOR _SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Table 12: Data Table Structure - tblUserRole

Field Name | Field Type Default Value Key Field

rolelD uniqueidentifier New GUID
roleTitle varchar(100)

39

7.1.7 tblSystemParameters

This table stores system parameters. There are a number of different system parameters, grouped by
type and ordered numerically. Each record contains a unique ID, used to reference the user in all
relevant tables.

Table 13: SQOL to create tblSystemParameters

CREATE TABLE [dbo].[tblSystemParameters](
[paramID] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[paramOrder] [int] NOT NULL,
[paramGroup] [varchar](100) NOT NULL,
[paramName] [varchar](100) NOT NULL,
[paramValue] [varchar](500) NOT NULL,
CONSTRAINT [PK tbISystemParameters] PRIMARY KEY CLUSTERED
(
[paramGroup] ASC,
[paramName] ASC
YWITH (PAD _INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP KEY =
OFF, ALLOW_ROW_LOCKS =ON, ALLOW_PAGE LOCKS = ON,
OPTIMIZE_FOR_SEQUENTIAL KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Table 14: Data Table Structure - tblSystemParameters

Field Name | Field Type Default Value Key Field

paramiD uniqueidentifier New GUID
paramOrder | int

paramGroup varchar(100)

paramName | varchar(100)

paramValue varchar(500)

7.2 Use Case SQL statements

This section of the document will outline the SQL statements associated with each Use Case covered
in Sections 6.1 and 6.2.

7.2.1 View Resources

Requestor SQL
User front-end | SELECT resourcelD, resType, resName, owner FROM tblResources
WHERE resName=@username

7.2.2 View Staff

Requestor SQL
User front-end | SELECT deptName from tblDepartments WHERE
deptManager=@username
SELECT userID, username, department, rolelD, emailAddress from
tblUsers WHERE department=@userdept

7.2.3 View Assignments

Requestor SQL
User front-end | SELECT resourcelD, resType, resName, owner FROM tblResources
WHERE resName=@username

The above data set will then be used to query Active Directory to identify current assignments.

7.2.4 Grant Access

Requestor SQL
User front-end | INSERT INTO tblRequests (userID, resourcelD, requestType) VALUES
(@userid, @resourceid, “Add”)
Console | UPDATE tblRequests SET success=@success, reqComment=@comment
application | WHERE requestID=@reqid

7.2.5 Revoke Access

Requestor SQL
User front-end | INSERT INTO tblRequests (userID, resourcelD, requestType) VALUES
(@userid, @resourceid, “Remove”)
Console | UPDATE tblRequests SET success=@success, reqComment=@comment
application | WHERE requestID=@reqid

41

7.2.6 Review Requests

Requestor
User front-end

SQL

SELECT requestID, requestDateTime, requestType, resName FROM
tbIRequests req

INNER JOIN tblResources res ON req.resourcelD=res.resourcelD
WHERE userID=@user

7.2.7 View Activities

Requestor
User front-end

SQL

SELECT logDateTime, requestType, requestDateTime, resourceName
FROM tblAuditLogs al

INNER JOIN tblRequests req ON al.requestID=req.requestID
WHERE userID=@user

7.3 Administrator Use Cases
7.3.1 View Users

Requestor
Administrator
front-end

7.3.2 Add User

Requestor
Administrator
front-end

SQL

SELECT userID, userName, emailAddress, deptname, roleTitle FROM
tblUsers usrs

INNER JOIN tblDepartments dpt ON usrs.department=dept.deptID
INNER JOIN tblUserRole rol ON usrs.roleID=rol.roleID

ORDER BY userName ASC

SQL
INSERT INTO tblUsers (username, department, roleID, emailAddress)
VALUES (@username, @dept, @role, @email)

7.3.3 Remove User

Requestor
Administrator
front-end

SQL
DELETE FROM tblUsers WHERE userName=@username

7.3.4 View Resources

Requestor
Administrator
front-end

SQL
SELECT resourcelD, resType, resName, Owner FROM tblResources
ORDER BY resType, resName

7.3.5 Add Resource

Requestor
Administrator
front-end

SQL
INSERT INTO tblResources (resType, resName, Owner) VALUES
(@restype, (@resname, (@owner)

42

7.3.6 Remove Resource

Requestor
Administrator
front-end

SQL
DELETE FROM tblResources WHERE resID=@resid

7.3.7 Create Matches

Requestor
Administrator
front-end
Administrator
front-end
Administrator
front-end

SQL
SELECT resourcelD, resType, resName, owner FROM tblResources

SELECT userID, username FROM tblUsers WHERE
username=(@username

UPDATE tblResources SET owner=@username WHERE
resourcelD=@resid

7.3.8 Delete Matches

Requestor
Administrator
front-end

SQL
UPDATE tblResources SET owner=null WHERE resourcelD=@resid

7.3.9 View Matches

Requestor
Administrator
front-end

SQL

SELECT resType, resName, userName, email Address, deptname FROM
tbIResources

INNER JOIN tblUsers usrs ON usrs.userName=owner

ORDER BY resName ASC

7.3.10 Review Requests

Requestor
Administrator
front-end

SQL

SELECT requestID, requestDateTime, requestType, resName FROM
tbIRequests req

INNER JOIN tblResources res ON req.resourcelD=res.resourcelD
ORDER BY requestDateTime

7.3.11 View Activities

Requestor
Administrator
front-end

SQL

SELECT logDateTime, requestType, requestDateTime, resourceName
FROM tblAuditLogs al

INNER JOIN tblRequests req ON al.requestID=req.requestID
ORDER BY logDateTime

7.4 Back-office Use Cases
7.4.1 Add Member

Requestor

SQL

43

7.4.2

7.4.3

Back-End
application

Back-End
application

SELECT requestID, username, resourceType, resourceName FROM
tbIRequests req

INNER JOIN tblResources res ON res.resourcelD = req.resourcelD
INNER JOIN tblUsers usrs ON usrs.userID=req.userID

WHERE success=@success AND requestType=@reqType

UPDATE tblRequests SET success=@success, reqComment=@comment
WHERE requestID=@reqid

Remove Member

Requestor SQL
Back-End | SELECT requestID, username, resourceType, resourceName FROM
application | tblRequests req
INNER JOIN tblResources res ON res.resourcelD = req.resourcelD
INNER JOIN tblUsers usrs ON usrs.user[D=req.user[D
WHERE success=@success AND requestType=@reqType
Back-End | UPDATE tblRequests SET success=@success, reqComment=@comment
application | WHERE requestID=@reqid
Notify User
Requestor SQL
Back-End | SELECT requestDateTime, requestType, resourceName, username,
application | reqComment from tbIRequests req

INNER JOIN tblResources res ON req.resourcelD=res.resourcelD
INNER JOIN tblUsers usrs ON req.userID=usrs.user[D
WHERE success=@success AND emailed=@emailed

44

8 Class Diagram

UserRole

rolelD: guid o.n
roleTitle: varchar

addRole(roleTitle) : string

User

SystemParameter

deleteRole(rolelD, roleTitle) : string
updateRole(rolelD, roleTitle) : string
getRole(rolelD) : string

Department

deptlD: guid
deptName: varchar
deptManager: varchar

addDept(deptName, deptManager) : string
deleteDept(deptiD) : string

updateDeptideptiD, deptName, deptManager) : string
getDept(deptiD) : string

getDepts() : string

Resource

resourcelD: guid
resType: varchar
resName: varchar
owner: varchar

userlD: guid
userName: varchar
deptlD: guid

rolelD: guid
emailAddress: varchar

paramiD: guid
paramOrder: int
paramGroup: string
paramName: string
paramValue: string

addUser(userName, deptlD, rolelD, emailAddress) : string
deleteUser{userlD) : string

updateRole({rolelD, userName, deptiD, rolelD, emailAddress) : string
getUser(useriD) : string

getUsers() : string

addParam(paramGroup, paramName, paramValue) : string

deleteParam(paramliD) : string

updateParam(paramiD, paramQOrder, paramGroup, paramMName, param\alue) : string
getParameter{paramiD) : string

getParameters() : string

getParameters(paramGroup): string

Request

requestiD: guid
requestDateTime: DateTime
useriD: guid

—— | resourcelD: guid

success: bit
emailed: bit
reqComment: varchar

addRequest{userD, resourcelD) : string

updateRequest{requestiD, userOD, resourcelD, success, emailed,reqComment) : string

viewRequest({requestiD) : string
viewRequests(userName) : string
viewRequests() : string

addResource(resType, resName, owner) : string
deleteResource(resourcelD) : siring
updateResource(resourcelD, resName, owner) : string
getResource(resourcelD) : string

getResources() : string

Audit Log
loglD : guid
logDateTime : DateTime
useriD : string

requestiD : string
logComment : string

addLogEntry{useriD, requestlD, logComment) : string
getResource(loglD) : string

getResources(userlD) : string

getResources() : string

Figure 36: Class Diagram

9 Conclusion

The purpose of this document is to provide a detailed breakdown of the function of all aspects of the
STARMAN application. The document provides all the necessary information to support the
successful development of the STARMAN application.

The document covers the Ul design, Use Cases for each function of the system and details of the
structure and SQL code necessary for each function too.

10 Glossary of Terms

AD Active Directory — The Microsoft infrastructure for managing user and resource
objects and all aspects of primary levels of security.

AAD Azure Active Directory — This is the cloud implementation of the Microsoft
Active Directory platform and infrastructure (see AD above)

SETU South-East Technological University

DC Domain Controller — A special server in an AD environment that manages and
controls all aspects of the AD structure. The DC stores the AD database and
manages the replication of all AD data across other network servers as required

MIIS Microsoft Internet Information Services — A platform for hosting web sites

SQL Simple Query Language — an industry standard for generating structured queries

to manage databases

47

	Table Of Contents
	Table Of Figures
	Table of Tables
	1 Introduction
	2 Application Architecture
	2.1 Front-end application
	2.2 Back-office application
	2.3 Web services
	2.4 Back-end database server

	3 Design Pattern
	4 UI/UX Design
	4.1 End-user interface
	4.1.1 Main form
	4.1.2 View resources assigned to a user
	4.1.3 Viewing managed resources
	4.1.4 Viewing who is assigned a resource
	4.1.5 Assign resources to a user
	4.1.6 Reviewing requests
	4.1.7 Reviewing activities

	4.2 Administrator front-end
	4.2.1 Staff administration
	4.2.2 Resource administration interface
	4.2.3 Operator/Resource Assignment Administration interface
	4.2.4 Review requests
	4.2.5 Review activities

	5 System Flowchart
	5.1 End-user Flowchart

	6 System Sequence Diagrams
	6.1 Front-end Use Cases
	6.1.1 View Resources
	6.1.2 View Staff
	6.1.3 View Assignments
	6.1.4 Grant Access
	6.1.5 Revoke Access
	6.1.6 Review Requests
	6.1.7 View Activities

	6.2 Administrator Use Cases
	6.2.1 View Users
	6.2.2 Add User
	6.2.3 Remove User
	6.2.4 View Resources
	6.2.5 Add Resource
	6.2.6 Remove Resource
	6.2.7 Create Matches
	6.2.8 Delete Matches
	6.2.9 View Matches
	6.2.10 Review Requests
	6.2.11 View Activities

	6.3 Back-office Use Cases
	6.3.1 Add Member
	6.3.2 Remove Member
	6.3.3 Notify User

	7 Database Schema
	7.1 SQL database table creation
	7.1.1 tblResources
	7.1.2 tblUsers
	7.1.3 tblRequests
	7.1.4 tblAuditLogs
	7.1.5 tblDepartments
	7.1.6 tblUserRole
	7.1.7 tblSystemParameters

	7.2 Use Case SQL statements
	7.2.1 View Resources
	7.2.2 View Staff
	7.2.3 View Assignments
	7.2.4 Grant Access
	7.2.5 Revoke Access
	7.2.6 Review Requests
	7.2.7 View Activities

	7.3 Administrator Use Cases
	7.3.1 View Users
	7.3.2 Add User
	7.3.3 Remove User
	7.3.4 View Resources
	7.3.5 Add Resource
	7.3.6 Remove Resource
	7.3.7 Create Matches
	7.3.8 Delete Matches
	7.3.9 View Matches
	7.3.10 Review Requests
	7.3.11 View Activities

	7.4 Back-office Use Cases
	7.4.1 Add Member
	7.4.2 Remove Member
	7.4.3 Notify User

	8 Class Diagram
	9 Conclusion
	10 Glossary of Terms

