
4th year project
Automated Drone Air Traffic

Control System
Final Report

Institute of Technology Carlow

.

Supervisor: Dr. Oisin Cawley
Author: James Hall
Submission Date: 26 April 2021



Abstract
This document is the final report on the development of the Automated Drone Air Traffic
Control system. It will outline the details of the project, including the technologies used and
the goals achieved, as well the learning outcome of the project.

1



Table of Contents

Abstract 1

Table of Contents 2

Table of figures 4

1. Introduction 5

2. Project Description 5
2.1 Language 5
2.2 Libraries/APIs 5

2.2.1 Olympe 5
2.2.2 Kivy 6

2.3 Operating System Linux Ubuntu 6
2.4 Hardware 6
2.5 The Application 7

2.5.1 The Main Screen 7
2.5.2 Add Virtual Drone 8
2.5.3 Remove Drone Button 9
2.5.4 View Drones 10
2.5.5 Add Location 12
2.5.6 Remove Location 12
2.5.7 View Location List 13
2.5.8 View Location Markers 14
2.5.9 Create Flight 15
2.5.10 Remove Flight 16
2.5.11 View Flights List 17
2.5.12 Start Flight 18
2.5.13 Abort Flight 19

3. Analysis of Project Achievements 19
3.1 Proof of Concept Test 19
3.2 Creation of Graphical User Interface Application 20
3.3 Drone and Flight Management Functionality 20

4. Issues Encountered 20
4.1 User interface clarity and functionality 20
4.2 Flight functionality 21
4.3 Account creation 21
4.4 Bebop 2 integration 21
4.5 Unit testing 21
4.6 Project management issues 21

2



4.6.1 Covid-19 21
4.6.2 Kivy MapView 22

5. Project Timeline/Milestones 23

6. Testing 24

7. Further Work 25
7.1 Multi-route flights 25
7.2 Addition of cloud based data storage 25
7.3 Adding compatibility for other drone types 25

8. Learning Outcomes 25

Acknowledgements 26

Plagiarism Declaration 27

3



Table of figures
Figure 1 Bebop 2 drone 7
Figure 2 The main map screen 8
Figure 3 The Add Virtual Drone Popup 9
Figure 4 The Remove Drone Popup 10
Figure 5 The Map with no drones drawn on screen 11
Figure 6 The map once the view drones button is pressed 11
Figure 7 Add Location Popup 12
Figure 8 Remove Location Popup 13
Figure 9 The View Location List Popup 13
Figure 10 The map without Location Markers 14
Figure 11 The map with Location Markers displayed 15
Figure 12 The Create Flight Popup 16
Figure 13 The Cancel Flight Popup 16
Figure 14 The View Flight List Popup 17
Figure 15 The Start Flight Popup 18
Figure 16 The drone on the right is beginning its ascent at the start of its flight 18
Figure 17 The Abort Flight Popup 19
Figure 18 Project milestone timeline 23

4



1. Introduction
This document will detail the process of creating the Automated Drone Air Traffic Control
system. It will explain the scope of the project, and the technologies used to create it. I will
also explain the difficulties faced during the development of the application. The goals
achieved and missed as well as what had to change in the design in order to realise the
current application.

2. Project Description
The purpose of this project is to create an application that is capable of automatically
controlling a drone or fleet of drones without the need for constant human input. The
application should be able to have drones connected to the system and their details stored.
It should be capable of storing the geo-locations of a number of real life locations that would
act as a transport network for the numerous drones to travel to and from. The system should
also be able to allow the user to create and begin automated flights and for the details of
these flights to be stored on the system.

The combination of these functionalities should allow for the user to begin a flight with touch
of a button and for the drone chosen for the flight to automatically take off from its origin,
travel to and land at its destination safely. This requires the inclusion of collision detection
mechanisms to ensure that drones do not collide with one another in flight. It also requires
the need to be able to cancel any flights in progress and have the drone return safely to their
origin or the nearest safe landing zone.

The application should be able to display all of the required information to the user in the
form of a GUI that would ideally show the real time locations of all drones on the system as
well as all locations on the system.

2.1 Language
The language used for this project was Python, specifically Python 3.6.9. Python is a high
level object oriented programming language that is considered to be beginner friendly. It has
a large standard library and supports a wide range of functions and operations. As it is
mostly an interpreted language, it is highly portable as its bytecode may run on any
compatible virtual machine.

2.2 Libraries/APIs

2.2.1 Olympe
Parrot’s Olympe SDK provides a Python based controller programming interface. It allows
for the use of both real and simulated drone flight, with the simulation being visualised
through their Sphinx software running on Gazebo, a 3d visualisation tool. Olympe is
available on the Linux platform and has been tested by the developers on Ubuntu 18.04 and

5



works on Debian 9 or higher. The software is written in the Python programming language
and allows the control of Parrot drones through Python scripts. The integration of the
Olympe SDK with the Sphinx virtualisation software allows potential developers to use a
virtual version of a number of Parrot drone types without the need for a physical drone on
hand.

2.2.2 Kivy
Kivy is an open source Python framework for developing mobile apps and other multitouch
application software with a natural user interface (NUI). It is capable of being run on Android,
iOS, Linux, macOS, and Windows. Of particular note for this project is Kivy’s Garden
MapView library which allows for the creation of map based widgets using OpenStreetMap
data.

2.3 Operating System Linux Ubuntu
Linux is an open source and community-developed operating system for a wide range of
device types like computers, servers, mainframes, mobile devices and embedded devices. It
is supported on most major computer platforms such as x86 and ARM. It comes in a variety
of types or “distributions” including Ubuntu, which was chosen for this project. Ubuntu is
based on the Debian GNU/Linux distribution. Ubuntu 18.04 was used for the creation of this
project due to its compatibility with Parrot Olympe SDK.

2.4 Hardware
The hardware used in the creation was the Drone, a Bebop 2 drone [Fig 1] created by Parrot
Drones. This is a now deprecated drone model from parrot and as such its features are
somewhat dated. It has a flight time of about 25 minutes and a range of approximately 300
meters which may be extended to roughly 500 meters with the use of the included “Sky
controller”. It’s main advantage for this project is the ability to interface with the drone
through Parrot’s Olympe API, allowing for the drone to be controlled independently of the
included controller.

6



Figure 1. Bepop 2 drone

2.5 The Application
The application consists of a single screen containing a map that is movable and has zoom
functionality. Placed above the map are 3 sets of colour coded buttons relating to the main
operations of the application. These allow for the addition of new drones, locations and
flights to the system. They also allow the user to remove these objects from the system. and
for the user to initiate flights, the progress of which may be viewed on the map itself with the
drone markers activated. Below the details of each functional aspect of the application with
be detailed.

2.5.1 The Main Screen
The entirety of the application can be controlled through the main map screen [Fig 2]. This
contains all the necessary functionality to perform CRUD operations for Drones, Locations
and Flights through the utilisation of popup menus.

7



Figure 2. The main map screen

2.5.2 Add Virtual Drone
The Add Virtual Drone Popup [Fig 3] consists of a text input box to enter the drone’s name
and a scrollable list of stored locations from which the user may enter the corresponding
number into the numerical input box below in order to choose the drone’s home location.
Upon clicking the “Add Drone” button the drone is stored on the system. As in all Kivy
popups, the user may exit the popup with no action being taken by clicking outside the
popup, they may also click the “Close Window” button.

8



Figure 3. The Add Virtual Drone Popup

2.5.3 Remove Drone Button
Upon clicking the “Remove Drone” button, the user is presented with a popup displaying a
list of all drones on the system [Fig 4]. The user may enter the number corresponding to the
drone they wish to remove from the system and then click the popup’s “Remove Drone”
button to delete the drone from the system.

9



Figure 4. The Remove Drone Popup

2.5.4 View Drones

When the “View Drones” button is pressed, the system’s drones are drawn on screen at their
correct locations [Fig 6]. Clicking the button again will hide them [Fig 5].

There are several different images for the drones, each indicating a different state or battery
level.

The drone will appear green when above 50% battery, orange
when below, and red when there in <10% battery left.

When the drone is increasing in height, it will display an up
arrow beside it

When the drone is decreasing in height, it will display an down
arrow beside it

10



Figure 5. The Map with no drones drawn on screen

Figure 6. The map once the view drones button is pressed

11



2.5.5 Add Location
When the user clicks the “Add Location” button, they are presented with a popup [Fig 7]
containing a text input where they can name their location. When they click the “Add
Location Name” button the popup will close and they may then click on the map and the new
location will be added at the coordinates corresponding to the location where they click.
They can click the “Close Window” button to exit the window without creating a new location.

Figure 7. Add Location Popup

2.5.6 Remove Location
Upon clicking the “Remove Location” button the user will be presented with a popup
displaying a list of all locations on the system [Fig 8]. They may enter a number
corresponding to the location they intend to remove and when the “Remove Location” button
is pressed, the location will be deleted from the system. The user may exit the popup without
any action being taken by pressing the “Close Window” button.

12



Figure 8. Remove Location Popup

2.5.7 View Location List
If the user wishes to see a list of all locations on the system, they can click the “View
Locations List” button to be presented with a popup displaying a list of all locations [Fig 9].
The user may exit the popup by pressing the “Close Window” button.

Figure 9. The View Location List Popup

13



2.5.8 View Location Markers
When the user clicks the “View Location Markers” button, all the locations will be drawn on
the map at their correct coordinates [Fig 11}. Clicking the button again will hide the markers
[Fig 10].

Figure 10. The map without Location Markers

14



Figure 11. The map with Location Markers displayed

2.5.9 Create Flight
When a user wishes to add a new flight to the system, by pressing the “Create Flight” button
they are presented with a popup displaying a list of all drones and locations on the system
[Fig 12]. They can enter a name for the flight here as well a numerical value corresponding
to the drone they wish to use for the flight and the location they wish for the drone to fly to.
Upon clicking the “Add Flight” button, the flight is added to the system and if all fields are
successfully filled in the popup closes.

15



Figure 12. The Create Flight Popup

2.5.10 Remove Flight

When the user wishes to remove a flight from the system, they click the “Remove Flight”
button and are presented with a popup showing them a list of all flights on the system [Fig
13]. They may enter the number corresponding to the flight they wish to remove and upon
hitting the “Cancel Flight” button the flight is removed from the system. The user may exit the
popup without any action being taken by pressing the “Close Window” button.

16



Figure 13. The Cancel Flight Popup

2.5.11 View Flights List
The user may view a popup [Fig 14] displaying a list of all flights on the system including
their chosen drone, start and end location and whether or not the flight is complete or not.
This is done by pressing the “View Flight List” button. They may exit the list by clicking the
“Close Window” button.

Figure 14. The View Flight List Popup

17



2.5.12 Start Flight
When the user wishes to begin a flight they may press the “Start Flight” button. They will be
presented with a popup displaying a list of all available flights on the system [Fig 15]. By
entering into the numerical input field the number corresponding to the flight they wish to
begin and clicking the “BeginFlight'' button, the flight will be started. They may then return to
the map view to watch any flights in progress on the map [Fig 16].

Figure 15. The Start Flight Popup

Figure 16. The drone on the right is beginning its ascent at the start of its flight

18



2.5.13 Abort Flight
If for some reason the user needs to quickly abort a flight, if the battery is running low or the
weather suddenly becomes dangerous to drone flight. The user may click the “Abort Flight”
button and be presented with the abort flight popup [Fig 17]. This will display a list of flights
to the user and they may enter the number corresponding to the flight in the numeric input
box and click the “Abort Flight” button. This will cause the drone to change course if
necessary and move to the nearest safe landing location on the system and land there. The
user may leave this popup without action by pressing the “Close Window” button.

Figure 17. The Abort Flight Popup

3. Analysis of Project Achievements
During the course of this project, the majority of the desired deliverables were achieved. A
functional GUI application was created using a new GUI creation tool in Python. The system
is able to accept CRUD operations on Drones, Locations, and Flight plans. There is a
system in place to detect when drones are in close proximity to one another, and for them to
take measures to avoid collisions. The system is capable of handling multiple flights
simultaneously and for all drones in flight to be correctly guided to their required
destinations. As well as this a script allowing for connection to a real drone was tested in a
basic script.

3.1 Proof of Concept Test
The purpose of this test was to ascertain whether it was feasible to gain control of a real
drone using the application without relying on the Olympe shell.

19



During the course of this test a connection to the Bebop 2 drone was established and a short
flight was carried out, involving the drone taking off moving forward, changing direction
moving further and then landing. This served as a proof of concept that the drone could
indeed be controlled through the API. This flight was carried out from the standard python
virtual environment and did not require the controlling script to be run from with the Olympe
shell. This was an important milestone as it further served as a proof of concept that the
system would be able to control drones independently of the Parrot ecosystem.

3.2 Creation of Graphical User Interface Application
As detailed in section 2, Kivy user interface tool was chosen for the development of the user
interface for this project.The task of creating a functioning graphical user interface using Kivy
and its Mapview widget proved to be one of the more difficult and time consuming tasks.
While at first glance, the Mapview tool appeared to be the ideal tool for the job, as it allowed
for easy map integration and simple marker placement, it’s functionality was incredibly
limited beyond this.

The ability to add and remove markers dynamically had to be created. Also the ability to add
markers to the map and their geo locations to the system by simply clicking on the map, took
up a large amount of time and involved in the end extending Kivy’s on_touch functionality.

3.3 Drone and Flight Management Functionality
The majority of drone control algorithms from the initial design specifications for the project
were achieved. CRUD operations for any number of drones, locations, and flights are
present on the system. As a proof of concept Python’s Pickle was used to provide persistent
data and the information was stored in a pickled format within the project files.

The system is capable of managing the flight of a drone or drones from their starting point to
their intended destination, and is capable or relaying that destination to the user in the form
of a list showing drone positions and also visually via the map, where each drone geo
coordinates are translated to the correct pixel locations on the MapView. There is a collision
detection system in place whereby when two or more drones approach within a certain
distance of one another, they execute an avoidance algorithm where the one with the lowest
battery takes precedence, followed by a simple check of which drone is further North and
then further West of the other.

4. Issues Encountered
While a majority of the required functionalities were achieved, there were some that could
not be completed due to various issues such as time constraints, choice of technology and
the current situation with Covid-19. These range from GUI based issues to integration with
the Bebop 2 drone.

4.1 User interface clarity and functionality
As Kivy’s Mapview widget is quite basic in its implementation, it provides no inbuilt
functionality for displaying text on the map itself or next to markers. This made it incredibly

20



difficult to display the names and details of the locations and drones displayed on the map.
Ultimately this was not achieved in the project to date. However some information about the
various drones was able to be displayed to the user visually by the use of different drone
images depending on whether the drone is ascending/descending or when the battery is
running low. The author's limited previous experience with creation of GUI applications also
led to some aspects of the UI not being as user friendly as they should be. The scrollable
lists while functional, do not always work as intended and suffer from some formatting
issues. Overall the look of the application could do with some improvement.

4.2 Flight functionality
Although the majority of functionality for the desired flight algorithms were achieved, the
ability to change the destination of a drone to any desired one mid flight was not
implemented. The ability to simply pause a flight and have the drone hover was also not
implemented and while not a strict requirement would have been a useful addition. The
reasoning behind these missed goals were simple time constraints on the project.

4.3 Account creation
The ability to perform CRUD operations for a user account was not implemented in the final
project due to time limitations. This would have been ideal to have implemented in the final
project to ensure the security of the system. Though is was included in the original design
specification for the project

4.4 Bebop 2 integration
Full integration of the Bebop 2 drone was not realised on this project. While a proof of
concept drone flight was achieved using a basic script that imported the project’s
BebopDrone.py module, the ability to fly the drone outside was hampered by restrictions due
to Covid-19. As the ability to test the drone outdoors was limited, it was decided to
concentrate on the virtual aspects of the system to ensure the collision detection and flight
algorithms were completed.

4.5 Unit testing
Due to time constraints, unit testing was not able to be achieved for this project. A set of unit
tests to check the stability and functionality of the codebase would have been desirable for a
finished product. This however was not possible as other deliverables needed to be
prioritised in order to get maximum functionality in the required timeframe.

4.6 Project management issues

4.6.1 Covid-19
The outbreak of Covid-19 and the intermittent usage of lockdowns in Ireland to combat its
spread caused severe issues with the ability to test the drone in an outdoor environment. As
it is illegal to fly a drone in Ireland without the proper drone pilot license and all drones must
be under direct control of a human operator at all times. It was decided that the virtual
aspects of the project and the generic functionality should be concentrated on, as the author

21



did not want to risk breaking both covid restrictions and drone regulations at the same time,
and a suitably remote location to test the system could not be reach within the 5km travel
restrictions in place for much of the project’s duration.

4.6.2 Kivy MapView
While Kivy’s MapView widget at first seemed like the perfect solution to map creation for the
project, it’s implementation and functionality turned out to be very basic. Though the map
window itself can be created with only a few lines of code and markers may be added to the
map with similar ease, the functionality of the addon ends there. The online documentation is
sparse and as such creative but time consuming solutions need to be worked out in order to
utilise the addon.

An example of this is that although markers may be added to the map with ease, there is no
easy way to remove them by type once added. As a result of this, when a user wants to view
drone markers on the map and while location markers are visible. All markers need to be
deleted and then redrawn with the required image for each marker type added on creation.

The ability to add new locations to the map by clicking on the map itself also required
extending the functionality of Kivy’s on_touch function. Overall the lack of functionality and
online resources relating to several issues encountered with Kivy’s functionality lead to time
consuming reading of the addon source code in order to understand how it could be coaxed
into providing the required results.

22



5. Project Timeline/Milestones

Figure 18. Project milestone timeline

The project milestones can be categorised by the delivery of documentation for the project,
the presentations of works to date and by significant resolution of tasks and blockers. In this
respect the milestones can be categorised as follows.

23



1. 13/10/2020: Project Specification received, research begun.

2. 13/11/2020: Research document handed in, Design phase begun

3. 16/11/2020: Coding for project begun.

4. 27/11/2020: Functional Specification hand in.

5. 02/11/2020: Control of virtual parrot drones achieved through Sphinx virtualization
software.

6. 12/12/2020: Gain control of virtual Parrot drones from outside the Olympe shell.

7. 15/12/2020: First project presentation of work to date.

8. 26/12/2020: Flight of real Bebop 2 drone from outside Olympe shell using
BebopDrone.py class with script.

9. 20/02/2021: Command line version of program implementing majority of required
functionality completed.

10. 05/03/2021: Beginning of conversion of functionality to GUI based application.

11. 12/03.2021: Second presentation of work to date.

12. 05/04/2021: Added majority of CRUD operations to GUI implementation.

13. 14/04/2021: Added ability to add new location by directly clicking on the map. No
longer need to enter in latitude and longitude as long floating point numbers.

14. 30/04/2021: Final delivery of Project.

6. Testing
While ideally a full set of black and white box unit tests would have been ideal for this
project, it was not possible to achieve this given other problems faced in delivering core
functionality for the project. However basic ad-hoc and beta testing was carried out to ensure
that each of the included functions of the end product were in a working condition. This
included trying to access out of bounds list addresses and ensuring that the program still
functioned sufficiently with large numbers of drones and flights in operation simultaneously.

In addition to this there was the proof of concept flight of the Bebop 2 drone in order to test
the ability of the program to fly a real drone from outside of the Olympe virtual environment.

24



7. Further Work
In addition to the current functionality of the application, it would also be beneficial to add
some extra functionality and QOL aspects to the application in the future.

7.1 Multi-route flights
It would be a worthwhile addition to the application for the user to be able to create flight
plans with multiple landing and take off events. This would have the advantage of being able
to make many stops along a more varied and complex route system. The addition of such a
feature would not be an enormous step beyond the current functionality of the system.

7.2 Addition of cloud based data storage
The addition of a cloud based data storage system would allow for users to access the fleet
of drones from multiple devices and allow for each location on the system to be used as an
active control hub for the drones. In this way a user 1 at location 1 could send a drone to
location 2 and user 2 at this location would be able to set up a return flight on the system
and execute it. Ideally this could be implemented using either a SQL relational database or
MongoDB non-relational database.

7.3 Adding compatibility for other drone types
As the system is currently, in order to be used with Parrot drones, the application must be
installed on Ubuntu 18.04 or older. This due to the need for the Olympe API to communicate
with Parrot drones. It would be advantageous to develop compatibility for other drone type
also. This would be no small feat, as for example DJI’s API is only compatible with Windows
devices currently. So solving the challenge of control both types of drone simultaneously
would be an interesting challenge to undertake.

8. Learning Outcomes
During the course of this project a new understanding of the requirements of creating a large
software project was achieved. This included the depth of research required to understand
what is needed to realise a working application, as well learning to persevere and find ways
to overcome the challenges faced along the way.

I gained a better understanding of the project life cycle during the course of this project.
From research for the requirements (planning, designing) to writing the code and iterating
through various working states (building, testing). Though the results are not perfect, I also
gained a better knowledge of documentation through use of the Sphinx auto documentation
tool. I feel I have a better understanding of the scope of the process than previously. My
development process was far from perfect, but the shortcomings have given me a better
understanding of what is required for future projects.

Through the use of various tools and platforms in the course of development, I have gained
a better working knowledge of Python, the project’s chosen language, and of how to build
functional applications using it. I have also gained a better understanding of the Linux

25



operating system and specifically Ubuntu. Where once the terminal interface was
foreboding, I am now more comfortable in it’s usage. My knowledge of git usage has
increased and so has my understanding of the need for proper documentation.

I feel that though many mistakes were made in terms of time management and allocation, I
would be better prepared in future to direct my time towards more important aspects of the
development process. This was most apparent in the early stages of the project when too
much time was given to trying to get multiple virtual drones running in Parrot’s Sphinx
virtualisation software instead of working on implementing my own visualisation.

While I believe I managed to achieve the majority of the project requirements, I know that
with proper time management and a better focus on the specifications, I could have
achieved more of the goals I set out to achieve.

During the course of this project the presentations proved invaluable for getting direct
feedback on the work I had done. They helped me to better understand the external aspects
of a project as the feedback could be likened to meetings with stakeholders in a real world
scenario. The presentations also served to help me hone my own presentation skills and will
be valuable additions to my skill set moving forward.

Acknowledgements
Firstly, I would like to extend my gratitude to Dr. Oisin Cawley, my project supervisor, for his
direction and knowledge during the course of this project. I would also like to thank all the
lecturers I have had the pleasure of learning from over the past four years at IT Carlow, as
well as all members of the faculty and staff that have made my time there a pleasurable
learning experience.

I would also like to thank my wonderful and helpful classmates from the last four years,
many of whom I have had the honour of getting to know as friends, and who have been
invaluable in their support and advice.

Finally I would like to thank Parents, my sister, my partner Magda and our dog Bailey for the
profound emotional support they have given throughout my studies and my life in general.

26



Plagiarism Declaration
Declaration

● I declare that all material in this submission e.g. thesis/essay/project/assignment is
entirely my/our own work except where duly acknowledged.

● I have cited the sources of all quotations, paraphrases, summaries of information,
tables, diagrams or other material; including software and other electronic media in
which intellectual property rights may reside.

● I have provided a complete bibliography of all works and sources used in the
preparation of this submission.

● I understand that failure to comply with the Institute’s regulations governing
plagiarism constitutes a serious offense.

Student Name: James Hall

Student Number: C00007006

Signature: James Hsll

27


