
TECHNICAL MANUAL

WEB BROWSER ADDON FOR DETECTING SQL

AND XSS VULNERABILITIES

COLIN BROPHY

CYBERCRIME & IT SECURITY

30/04/21

Contents

INTRODUCTION . 2

INSTALL . 2

SQL TESTING . 3

XSS TESTING . 4

PAYLOAD ENCODER/DECODER . 5

EDUCATION . 6

CODE . 6

LANGUAGES USED . 7

HTML & CSS . 7

JAVASCRIPT . 7

CODE RUN THROUGH . 8

MANIFEST.JSON . 8

SQLINJECTION.HTML . 9

SQLINJECTION.JS . 9

TESTFORSQL.JS . 10

XSS.HTML . 11

XSS.JS . 11

TESTFORXSS.JS . 12

PAYLOADENCODER.HTML . 12

URLENCODER.JS . 13

EDUCATION.HTML . 13

HOMEPAGE.HTML . 14

1

C00227822 FUNCTIONAL SPEC

INTRODUCTION

This technical Manual details the programming languages involved in the project, and will

outline all of the code that went into producing the Chrome Extension. The start of the

document will run through how to get the extension up and running, and will walk you

through how to use its functions.

INSTALL

As the extension isn’t on the chrome web store, the extension needs to be side-loaded into

your browser. The following are the steps to get it up and running!

• Go to chrome://extensions/ in the URL bar in Chrome and check the box for Developer

mode in the top right.

• Click the "Load Unpacked Extension" button and select the folder where you have the

extension downloaded.

• Done! Pretty simple install, and we’re ready to go!

Page 2 of 14

C00227822 FUNCTIONAL SPEC

SQL TESTING

Once we have the extension installed, we’re ready to test! For testing purposes I have used the

Damn Vulnerable Web App. The following are the steps to run an SQL test against the site.

• Click into the text box you would like to attack so it is the current active text box.

• Open the extension and head to the SQL tab. Here we have 2 options.

• Option 1: Enter a custom payload into the extension and hit "Test Custom SQL". The

payload will run and the result will be seen on screen.

• Option 2: Hit either of the automate buttons to auto run some proven payloads.

Page 3 of 14

C00227822 FUNCTIONAL SPEC

XSS TESTING

The XSS testing works the very same as the SQL testing, but for automating the running of

XSS payloads.

• Click into the text box you would like to attack so it is the current active text box.

• Open the extension and head to the XSS tab. Here we have 2 options.

• Option 1: Enter a custom payload into the extension and hit "Test Custom XSS". The

payload will run and the result will be seen on screen.

• Option 2: Hit the automate button to auto run a proven payload.

Page 4 of 14

C00227822 FUNCTIONAL SPEC

PAYLOAD ENCODER/DECODER

The payload encoder/ decoder is as simple as inserting the payload you wish to encode/

decode and pressing the relevant button. The desired output will be put in the text box,

replacing what was there. The encoded payloads can then be used in the XSS or SQL Injection

custom payload options, or used directly in the URL of the site, depending on the attack.

Page 5 of 14

C00227822 FUNCTIONAL SPEC

EDUCATION

The education tab is self-explanatory. There is some basic but useful info regarding the types

of attacks covered by the extension, with links to the OWASP site for further, more in-depth

explanations/ tips.

CODE

That’s all for the user manual. I wanted to keep the extension as simple as possible to use. I

believe even without a user manual the extension would be use-able by someone who is only

seeing it for the first time, which is a positive.

Ideally, my app would be available on the Chrome Web Store, but not having it finished

and other time constraints didn’t allow for this.

Page 6 of 14

C00227822 FUNCTIONAL SPEC

LANGUAGES USED

HTML & CSS

HTML CSS were hugely important to creating a professional and premium look and feel

to the extension. Every website on the internet uses them, so why should web browser

extensions be any different? HTML is essential for creating the general layout, the buttons,

text and navbar. CSS goes hand in hand to set out the look and feel of these objects, and will

make or break how professional the extension looks.

I used a CSS library called "Semantic-UI" in the creation of the extension which cut my

coding time down by a significant amount. The ability to place a button and assign it a class

and have the library do the rest was a huge help.

JAVASCRIPT

Love it or hate it, JavaScript is everywhere, and this Chrome extension is no different.

JavaScript was fundamental to this extension to allow me to interact with the DOM and

manipulate text fields. JavaScript is the main back-end for storing and running the payloads

against the page, and if I had completed the project, would have allowed me to automate the

testing of multiple payloads instead of just one as a proof of concept.

The following pages will outline each of the files used by the extension and will showcase

the code for each.

Page 7 of 14

C00227822 FUNCTIONAL SPEC

CODE RUN THROUGH

MANIFEST.JSON

The manifest file is the main file Chrome uses to get info about the extension. It outlines

the version of the manifest being used, the version of the extension itself, as well as what

permissions the extension needs access to to perform it’s functionality.

The js file the manifest referrs to "content.js" needs to exist for the extension, but has no

code in it in my implementation.

The browser action "default_popup" is the main page you see when you click on the

extension itself.

Page 8 of 14

C00227822 FUNCTIONAL SPEC

SQLINJECTION.HTML

This is simply the page within the extension that is seen when the user clicks onto the SQL

Injection tab. It outlines what buttons should be present, as well as the text box for custom

payloads.

SQLINJECTION.JS

The sqlinjection.html file includes the SQL Injection JavaScript file, outlined below:

Page 9 of 14

C00227822 FUNCTIONAL SPEC

The JavaScript file is where the magic happens. From top to bottom, we see the array

which holds onto the payloads used by the extension. Under this, the "testCustomSQL()"

function gives a variable testValue a value of whatever is in the input field of the extension.

The "chrome.tabs.executeScript()" function is what allows us to execute JavaScript on the

current active page.

We first executeScript to insert the new variable we created, then executeScript a second

time to insert our actual test script, this way the test script has access to the variable we

created.

Under the "testCustomSQL()" function is the JS that listens for a "click" on the "testCus-

tomSQL" button within the extension.

The functions following, "testSQLOne()" and "testSQLTwo()" work in the same way, only

instead of the testValue variable being equal to the text box in the extension, they are equal

to the first and second entries in the array respectively.

TESTFORSQL.JS

Each of the functions mentioned above uses the "testForSQL.js" file to actually run the test,

which is a rather simple file which just inserts the value of the testValue variable into the

currently active text box and hits the submit button on the page!

Page 10 of 14

C00227822 FUNCTIONAL SPEC

XSS.HTML

The HTML and JavaScript files for the XSS implementation are fairly similar, so I will insert

them into the doc here but you can refer to the above explanation.

XSS.JS

Page 11 of 14

C00227822 FUNCTIONAL SPEC

TESTFORXSS.JS

PAYLOADENCODER.HTML

Page 12 of 14

C00227822 FUNCTIONAL SPEC

URLENCODER.JS

The URLEncoder coder from top to bottom. We are listening for when the encodeurl

and decodeurl buttons are clicked in the payloadeencoder.html file, these will then run the

corresponding functions, either "encode()" or "decode()" respectively.

Each of these function simply takes in the value that’s in the text box in the extension, and

replaces the characters with their encoded version or vice-versa.

EDUCATION.HTML

Page 13 of 14

C00227822 FUNCTIONAL SPEC

HOMEPAGE.HTML

Finally, we have the first page you are greeted with when you open the extension, the home-

page. This page servers no purpose other than to be the popup for the extension and to allow

navigation to the other pages.

Page 14 of 14

