AWS Cert Alert
Final Report

Oisin Chelmiah
C00246756

Supervisor:
Dr Keara Barrett

Final Report

Abstract

This report outlines the design and implementation of a certificate management system within
Amazon Web Services (AWS) using a state machine with Lambda code. The system, aptly
named AWS Cert Alert, automates the process of gathering information about Transport Layer
Security (TLS) certificates stored in the account, logging expiring certificates in Security Hub,
passing certificate details to a DynamoDB database, updating a dashboard, and notifying users
of updates. Additionally, the system was expanded to include scanning Cloud Formation
stacks, logging orphaned resources in Security Hub, logging all resources in another
DynamoDB database, and updating a new page on the dashboard.

Oisin Chelmiah C00246745 2

Final Report

Acknowledgments

Before I get started, I’d like to thank a few people for helping me throughout the course of this
project.

Firstly, I’d like to thank my supervisor Dr Keara Barrett for providing guidance throughout the
project and keeping me on track.

I’d also like to thank my workplace mentors Shauna Bond and Rocia Fernandes from Unum
Technology Centre Ireland for helping me come up with the idea for this project while 1 was
on work placement.

Finally, I’d like to thank my family, friends, and my partner Evelyn Keane for helping me get
through the year with my sanity intact.

Oisin Chelmiah C00246745 3

Table of Contents

ABSTRACT
ACKNOWLEDGMENTS
TABLE OF CONTENTS
TABLE OF FIGURES
INTRODUCTION
OVERVIEW

WHY DO THIS PROJECT?
PROJECT DESCRIPTION
PROJECT OUTLINE
Processing — Lambdas & State Machine
Logging — Dynamo Databases & Security Hub
Cert Alert Database
Stack Tracker Database Description
Security Hub
Notification — Email
Dashboard — Quick Sight Dashboard
Cert Alert Page
Stack Tracker Page
PROJECT REVIEW
Specification Achievements
Possible Future Developments
General Issues
LEARNING OUTCOMES
TESTING

SUMMARY & CONCLUSION
PLAGIARISM DECLARATION
GLOSSARY

APPENDICES

Oisin Chelmiah C00246745

Final Report

N o A~ W N

© O 00

10
10
11
11
12
13
13
16
18
18
18
19
19
20

21
22
23
24

Table of Figures

Figure 1 — Cert Alert Logo

Figure 2 - Cert Alert State Machine

Figure 3 — Cert Alert Database

Figure 4 — Stack Tracker Database

Figure 5 — Security Hub

Figure 6 — SNS Email Notification

Figure 7 — Cert Alert: Inmediate Recommendations
Figure 8 — Cert Alert: General Certificate Details
Figure 9 — Cert Alert: Certificates in Use

Figure 10 — Cert Alert: Signature Algorithm

Figure 11 — Cert Alert: Other Details

Figure 12 - Stack Tracker: Inmediate Recommendations
Figure 13 — Stack Tracker: Resource Details

Figure 14 — Stack Tracker: Resource Status

Figure 15 — Stack Tracker: Other Details

Table 1 - Specification Achievements
Table 2 — Possible Future Developments
Table 3 — General Issues

Table 4 — Learning Outcomes

Table 5 — Testing

Appendix 1 — Cert Alert Page

Appendix 2 — Stack Tracker Page

Appendix 3 — mockCerts.py

Appendix 4 — readAccount.py

Appendix 5 — readCerts.py

Appendix 6 — listStacks.py

Appendix 7 — findOrphanedResources.py

Appendix 8 — writeToDynamoDB.py

Appendix 9 — pushToDynamoDBOrphanedResources.py
Appendix 10 — writeToSecurityHub.py

Appendix 11 — writeOrphanedResourcesToSecurityHub.py

Appendix 12 - sendAlert.py

Oisin Chelmiah C00246745

Final Report

10
11
11
12
13
14
14
15
15
16
16
17
17

18
18
19
19
20

24
25
29
29
30
30
31
32
32
34
37
37

Final Report

Introduction

This report provides an overview of the Cert Alert system created within AWS. The system
uses a state machine with Lambda code to automate the process of gathering information about
certificates in use by AWS accounts, logging expiring certificates in Security Hub, passing
certificate details to a DynamoDB database, updating a dashboard, and notifying users of
updates.

In addition to the initial functionality, the system was expanded to include scanning Cloud
Formation stacks, logging orphaned resources in Security Hub, logging all resources in another
DynamoDB database, and updating a new page on the dashboard.

This report outlines the design and implementation of the system, as well as any issues faced
throughout production and any changes that were made along the way. Additionally, it
discusses potential areas for future development and improvement.

Oisin Chelmiah C00246745 6

Final Report

Overview

Why do this project?

Organizations are increasingly using cloud infrastructure to manage their IT infrastructure, and
AWS is a popular cloud service provider. However, the management of these certificates and
resources can become increasingly complex, especially when dealing with large-scale
environments. AWS provides various tools for certificate management, such as Certificate
Manager and Security Hub, but they still have limitations in terms of providing an overall view
of certificate and resource status across multiple accounts. AWS's current tools for managing
certificates and resources are limited and often require manual intervention, which can lead to
errors and vulnerabilities. This can result in potential security issues and compliance violations,
which can be costly for organizations in terms of money and reputation.

Organisations often face challenges with certificate management and resource management
such as expired certificates, orphaned resources, and insecure signature algorithms. Best case
scenario, these issues can cause operational downtime, security risks, and compliance issues,
all of which can have a negative impact on the organisation's reputation and finances. In
extreme cases, an expired certificate can cause the collapse of a whole organisation’s service.

A recent example of an expired certificate having a huge effect on an organisation can be
viewed in a report by the Irish Times! about a major incident report that was submitted to the
Department of Communications. According to the report, the 999 Emergency Call Answering
Service as well as a fallback automated answering system lost all functionality after the
certificate that the operators used to communicate with the computer system expired. Over 216
callers were affected, even though the system was only inoperable for an hour and twelve
minutes, proving that certificate expiry not only affects the organisation but also the public that
depend on the organisation.

AWS Cert Alert was developed to address these challenges by automating and streamlining
the process of managing certificates, resources, and CloudFormation stacks withinn AWS
accounts. The system utilizes a state machine with Lambda code to gather information about
certificates in use, log expiring certificates in Security Hub, pass certificate details to a
DynamoDB database, update a dashboard created with QuickSight Dashboard, and notify users
of updates via email using Simple Notification Service.

With AWS Cert Alert, organisations can have a better overall view of the status of their
certificates and resources, reducing the risk of operational downtime, security risks, and
compliance issues. The system provides a central point for certificate and resource
management, allowing organisations to quickly identify and address any issues that may arise.
This saves time and resources, allowing organisations to focus on their core business
operations.

L https://www.irishexaminer.com/news/arid-40967141.html

Oisin Chelmiah C00246745 7

https://www.irishexaminer.com/news/arid-40967141.html

Final Report

Project Description

7

Cert Alert

Figure 1 — Cert Alert Logo

AWS Cert Alert is a comprehensive certificate management system designed to automate and
streamline the process of managing certificates, resources, and Cloud Formation stacks within
AWS accounts. The system utilizes a state machine with Lambda code to gather information
about certificates in use, log expiring certificates in Security Hub, pass certificate details to a
DynamoDB database, update a dashboard created with Quick Sight Dashboard, and notify
users of updates via email using Simple Notification Service (SNS).

In addition to the initial functionality, AWS Cert Alert was expanded to include scanning Cloud
Formation stacks, logging orphaned resources in Security Hub, logging all resources in another
DynamoDB database, and updating a new page on the dashboard. This section of the system is
called Stack Tracker to differentiate it from the Cert Alert part of the system.

To add to the certificate management aspect of the system, the system was further enhanced to
check whether certificates are in use and evaluate the security of the signature algorithm being
used. Based on the evaluation, the system makes a suggestion as to whether the certificate
should be renewed, removed, or if the signature algorithm should be updated. This functionality
provides users with valuable insights into the security of their certificates and enables them to
take appropriate action to maintain a secure environment.

These additions provide enhanced security and organisation for the AWS accounts associated
with the system. With the ability to detect expiring certificates, evaluate the security of the
signature algorithm being used, and take automated actions to maintain a secure environment,
AWS Cert Alert is a valuable tool for organisations looking to maintain secure and organized
AWS environments.

Oisin Chelmiah C00246745 8

Final Report

Project Outline

Processing — Lambdas & State Machine

The main processing part of the system is performed by an AWS Step Functions state machine,
depicted below. Each block represents one of the functions used by the state machine. These
functions are written in Python 3.11 and are stored in AWS Lambda. The state machine is
configured to run on a schedule by Amazon Event Bridge.

[Start]

Figure 2 - Cert Alert State Machine

The state machine functions as follows:

First, the state machine will check what AWS account it is running in.

The state machine will then split into two parallel streams. One stream will scan all the
TLS certificates stored in the account, the other stream will get the details of all
resources currently allocated to stacks stored in Cloud Formation.

For each certificate, the state machine will store all the details of the certificate in the
Cert Alert database. Any certificates that have expired or have an upcoming expiry date
are then logged as vulnerabilities in Security Hub.

Oisin Chelmiah C00246745 9

Final Report

e For each stack resource, the state machine will store the details of the resource in the
Stack Tracker database. Any resources that have become orphaned are logged as
vulnerabilities in Security Hub.

e Once all the processing has been complete, the Cert Alert dashboard will automatically
update itself based on the data stored in the databases. An email notification is then sent
to a user specified during the creation of the system to notify them that the dashboard
has been updated.

The way the state machine is designed allows it to be updated with ease. Any new
functionalities can be added in parallel to the already existing functionalities without altering
them. This ensures that the system is adaptable and scalable.

Logging — Dynamo Databases & Security Hub

The logging functionality of the system is split into two parts:

e Logging all certificate and resource details in databases
e Logging certificate expiry and orphaned resource vulnerabilities in Security Hub

Certificate details are stored in the Cert Alert database and stack resource details are stored in
the Stack Tracker database. The benefit of storing these details in databases is that they can
now be accessed by the dashboard part of the Cert Alert system.

Cert Alert Database

CertificateArn v | DomainName v | CreatedAt v | ExpiresOn v | ExtendedKeyUsages v | HasAdditionalSubjectAlternativeName

arn:aws:acm:us-east-1:91650798992 2:certificate/certificate_ID5 example5.com 2022-08-2... 2023-04-2... [{"S":"NONE"}] false

arn:aws:acmius-east-1:916507989922:certificate/certificate_ID4 exampled.com 2022-08-2... 2024-03-0... [{"S":"NONE"}] false

-east-1:916507989922:certificate/certificate_ID3 example3.com 2022-08-2... 2023-02-0... [{"S":"NONE"}] false
arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID example.com 2022-08-2... 2024-04-2... [{"S":"NONE"}] false

arn:aws:acm:us-east-1:91650798992 2:certificate/certificate_ID2 example2.com 2022-08-2... 2023-01-3... [{"S":"NONE"}] false

Figure 3 — Cert Alert Database

The data stored in the Cert Alert databases is taken directly from whatever is stored in Amazon
Certificate Manager (ACM). Certificate details include certificate Amazon Resource Number
(ARN), domain name, creation and expiration dates, key and signature algorithms, and contains
a lot of extra data that can be hard to read, especially for anyone new to certificate management.
The dashboard section of the system takes in this data and displays it in an easy-to-read format
as well as highlighting the most important details of each certificate.

Oisin Chelmiah C00246745 10

Stack Tracker Database Description

PhysicalResourceld v LogicalResourceld

serve-Func-G8LPGOTS...

orphanedresourcetest-... S3B5AECB
dynamocatalog ConnectorConfig
orphanedresourcetest- 53B41Y
serverlessrepo-Athena. FunctionRole

v | Driftinformation

v

FunctionExecutionPolicy {'StackResourceDrift...

{'StackResourceDrift...

{'StackResourceDrift...

{'StackResourceDrift...

{'StackResourceDrift...

Figure 4 — Stack Tracker Database

ResourceStatus ¥ | ResourceType v | Stackld

CREATE_COMPLETE AWS:IAM::Policy armawsiclo.
DELETE_COMPLETE AWS::53:Bucket armawsiclo.
CREATE_COMPLETE AWS:Lambda::. arnaws:clo.
DELETE_SKIPPED AWS::53:Bucket arnaws:clo.
CREATE_COMPLETE AWS:IAM: Role armaws:clo.

v

StackNa...

v

serverlessre...

OrphanedR...

serverlessre...

OrphanedR...

serverlessre...

Final Report

Timestamp v

2023-02-07 12:18:50.021000+0...
2023-03-03 12:14:05.561000+0...
2023-02-07 12:18:42.796000+0...
2023-03-03 12:16:27.838000+0...

2023-02-07 12:18:30.299000+0...

The Stack Tracker database contains details of resources stored in Cloud Formation stacks. A
CloudFormation stack is a collection of AWS resources that you can manage as a single unit.

Security Hub

Figure 5 — Security Hub

Record
State

ACTIVE

ACTIVE

ACTIVE

ACTIVE

Compliance

Updated at ¥
Status gt

A nth ag
A month
A amonth
A month

Security Hub is an AWS service that scans AWS accounts for vulnerabilities and stores these
vulnerabilities in a log. My system adds to this service by creating three logs for vulnerabilities
that Security Hub does not currently scan for:

e Certificate Expired — A certificate has passed its expiration date and needs to be

renewed.

e Certificate with Upcoming Expiry — A certificate has not expired yet, but its expiry date
is within 45 days.
e Orphaned Resource — A resource that was part of a Cloud Formation stack where the
stack was deleted but the resource itself still exists.

Oisin Chelmiah

C00246745

11

Final Report

-

Dear User,

The AWS Cert Alert Dashboard has been updated. Please check the dashboard using the following link:
https://eur03.safelinks.protection.cutlook.com/?url=https%3A%2F%2Fus-east-1.quicksight.aws.amazon.com%2Fsn%2Fdashboards%2Fa57c0d4a-b5e0-45ca-a07a-8855dead939f& data=05%7C01%
7CC00246745%40itcarlow.ie%7Cdc89a8c015dd45aef8dc08db26138cca%7Ca762370c07674d5bb5b302ccBec279fd%7C1%7C0%7C638145637626151932%7CUnknown%7CTWFpbGZsb3d8ey)WI-

ioiMCAwLiAWMDAILCIQljoiV2IuMzliLCIBTil61k1haWwil CIXVCIEMn0%3D%7C3000%7 C%7 C¥%7 Csdata=CPZVxE9aQNyR1raYLBVI7jKwV9InABAG%%2B5AVpy8S2PQ%3D&reserved=0

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsns.us-east-1.amazonaws.com%2Funsubscribe. html%3FSubscriptionArn%3Darn%3Aaws%3Asns%3Aus-east-1%3A916507989922%
3AAWSCertAlert%3Ae31b42a1-096f-4dcf-b7c1-15c00918152e%26Endpoint%3DC00246745%A40itcarlow.ief data=05%7C01%7CC00246745%40itcarlow.ie%7Cdc89a8c015dd45aef8dc08db26138cca%
7Ca762370c07674d5bb5b302cc8ec279fd%7C1%7C0%7C638145637626151932%7 CUnknown%7CTWFpbGZsb3d8ey)WljoiMCAwLjAwMDAILCIQljoiV21uMzIiLCIBTil61k1haWwil CIXVCIEMn0%3D%7C3000%
7C%7C%7 Csdata=fCOrufmTV48bYaGvRYuvB7ZSATyyr%2FWLLarulvOpGIM%3D&reserved=0

Please do not reply directly to this email. If you have any questions or comments regarding this email, please contact us at https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Faws.ama-
zon.com%2Fsupport&data=05%7C01%7CC00246745%40itcarlow.ie%7Cdc89a8c015dd45aef8dc08db26138cca%7Ca762370c07674d5bb5b302¢cc8ec279fd%7C1%7C0%7C638145637626151932%
7CUnknown%7CTWFpbGZsb3d8eyIWIjoiMCAwLiAwMDAILCIQljoiV2IuMzIiLCIBTil61k1 haWwil CIXVCIEMn0%3D%7C3000%7C%7C%7C&sdata=bd%2F0eRRgANIqIDVH7cXxx1r075PLeTg6BSFodqu2 WEU%
3D&reserved=0

Figure 6 — SNS Email Notification

The email notification is sent using Amazon SNS. The email is sent as the last function of the
state machine and can be configured to be sent to multiple users or an email list if needed. The
email contains a link to the dashboard that can be viewed once the recipient logs into their
AWS account.

Oisin Chelmiah C00246745 12

Final Report

Dashboard — Quick Sight Dashboard

The dashboard is split into two pages, the Cert Alert page and the Stack Tracker page. The
pages in full can be viewed at Appendix 1 and Appendix 2. The section below breaks down
each page into its individual elements. The dashboard is fully customisable the owner of the
AWS account that the Cert Alert system is deployed in. The read only version of the dashboard
is the version that is sharable, however a user must have an AWS account to view the
dashboard. The dashboard can also be exported to a PDF file for easy sharing.

Cert Alert Page

Immediate Recommendations

Immediate Recommendations

CertificateArn

arn:aws:acm:us-east-1:916507989922.certificate/certificate_ID2

arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID3

Figure 7 — Cert Alert: Immediate Recommendations

Recommendation

This certificate has EXPIRED but is NOT currently in use, may not need to be
renewed.

This certificate has EXPIRED but is NOT currently in use, may not need to be
renewed.

The Immediate Recommendations table is the very first thing the user sees when they open the
dashboard. It gives recommendations based on all of the data supplied on each certificate and
then shows any certificates that require immediate action. These certificates are certificates that
need to be renewed, certificates that are not in use. and certificates using insecure signature

algorithms.

Oisin Chelmiah

C00246745

13

Final Report

General Certificate Details Table

General Certificate Details

CertificateArn DomainName ExpiresOn KeyAlgorithm SignatureAlgorithm InUse Type
. . 2023-01- - o
arm:aws:acm:us-east-1:916507989922:certificate/certificate_ID2 example2.com RSA_2048 md5WithRSAEncryption False IMPORTED
31T00:00:00.000000+00:00
e e 2023-02- - N
arn:aws:acm:us-east-1:91650798992 2:certificate/certificate_ID3 example3.com RSA_2048 sha256WithRSAEncryption False IMPORTED
01T00:00:00.000000+00:00
" " 2024-03-))
arn:aws:acm:us-east-1:91650798992 2:certificate/certificate_ID4 exampled.com EC_prime256v1 ecdsa-with-SHA256 True IMPORTED
01T00:00:00.000000+00:00
. . 2024-04- X .
arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID example.com RSA_2048 sha256WithRSAENncryption True NATIVE
26T00:00:00.000000+00:00
- = 2023-04- . .
arn:aws:acm:us-east-1:91650798992 2:certificate/certificate_ID5 example5.com RSA_2048 sha224WithRSAENcryption True NATIVE
20T00:00:00.000000+00:00

Figure 8 — Cert Alert: General Certificate Details

This table displays key information on all of the certificates. Details include: certificate ARN,
domain name, expiry date, key algorithm, signature algorithm, whether the certificate is in use,
and whether the certificate is imported or a native AWS certificate.

Certificates in Use

Certificates in Use Certificate Usage
In Use CertificateArn Usage Recommendations

M Tru arn:aws:acm:us-east- Certificate i : tly i # certificate i ded
ertificate is not currently in use, review if certificate is needed.
1:916507989922:certificate/certificate_ID2 ¥
arn:aws:acm:us-east-
. Certificate is not currently in use, review if certificate is needed.
1:916507989922:certificate/certificate_ID3
arn:aws:acm:us-east-
. Certificate is in use, make sure it is renewed before the expiry date
1:916507989922:certificate/certificate_ID5
arn:aws:acm:us-east-
. Certificate is in use, make sure it is renewed before the expiry date.
1:916507989922:certificate/certificate_ID4
arn:aws:acm:us-east-

1:916507989922:certificate/certificate_ID Certificate is in use, make sure it is renewed before the expiry date.

Figure 9 — Cert Alert: Certificates in Use

The certificates in use table has a pie chart associated with it to show whether certificates are
in use in the AWS account.

Oisin Chelmiah C00246745 14

Final Report

Signature Algorithm

Signing Algorithms Used Signature Algorithm Recommendations
Signature Algorithm CertificateArn Signature Algorithm Recommendation

M sha256WithRSAENcryption arn:aws:acmius-east-

o . Strong signature algorithm (ECDSA with SHA-256)
1:916507989922:certificate/certificate_ID4

sha224WithRSAEncryption

W md5WithRSAEncryption arn:aws:acm:us-east- Strong signature algorithm (SHA-224) but would recommend updating to

1:916507989922:certificate/certificate_ID5 SHA-256
ecdsa-with-SHA256

arn:aws:acm:us-east-

Sti ignat Igorithm (SHA-256)
1:916507989922:certificate/certificate_ID ChoRlatictalooihnl)

arn:aws:acm:us-east- . X
. . Strong signature algorithm (SHA-256)
1:916507989922:certificate/certificate_ID3

arn:aws:acm:us-east- Weak signature algorithm (MD5), reccomend switching to SHA-256 or
sha224WithRSAEn... 1:916507989922:certificate/certificate_ID2 ECDSA with SHA-256

Figure 10 — Cert Alert: Signature Algorithm

The signature algorithm section gives details about what signature algorithms each certificate
is using and gives recommendations based on these algorithms. If a certificate is using an old
or insecure signature algorithm, the system will recommend to update or change the algorithm.

Other Details

Key Algorithms Used Certificate Types
Key Algorithm Type
EC-prim M RSA_2048 W IMPORTED
EC_prime256v1 NATIVE

NATIVE

. IMPORTED

- RSA_2048

Figure 11 — Cert Alert: Other Details

The dashboard also has charts depicting what key algorithms are in use and whether certificates
are native to AWS or imported from another certificate authority.

Oisin Chelmiah C00246745 15

Final Report

Stack Tracker Page

Immediate Recommendations

Immediate Recommendations

PhysicalResourceld ResourceType Recommendations

orphanedresourcetest-s3b41y-15y9ym89e669a AWS::S3::Bucket This resource has been ORPHANED, please delete this resource fully

Figure 12 — Stack Tracker: Immediate Recommendations

Like the Cert Alert page, this table is the first thing that a user will see when accessing the
dashboard. It details resources any orphaned resources that should be reviewed and deleted if
necessary.

Resource Details

Resources
LogicalResourceld PhysicalResourceld ResourceType ResourceStatus StackName
ConnectorConfig dynamocatalog AWS::Lambda::Function CREATE_COMPLETE serverlessrepo-AthenaDynamoDBConnector
FunctionExecutionPolicy serve-Func-GBLPGOTIYPUK AWS:1AM::Policy CREATE_COMPLETE serverlessrepo-AthenaDynamoDBConnector
FunctionRole serverlessrepo-AthenaDynamoDBConnecto-FunctionRole-1DRLIONMIQOQO AWS:1AM:Role CREATE_COMPLETE serverlessrepo-AthenaDynamoDBConnector
S3B41Y orphanedresourcetest-s3bd1y-15y9ymB89e669a AWS::53::Bucket DELETE_SKIPPED OrphanedResourceTest
S3BSAECB orphanedresourcetest-s3bSaech-4shdi2b6esOc AWS::53::Bucket DELETE_COMPLETE OrphanedResourceTest

Figure 13 — Stack Tracker: Resource Details

This table contains all the details of resources stored in Cloud Formation stacks. Details
include: logical resource 1D, physical resource ID, resource type, resource status, and the name
of the stack the resource is stored in.

Oisin Chelmiah C00246745 16

Resource Status

Resource Status

Resource Status

M DELETE_SKIPPED
M DELETE_COMPLETE

W CREATE_COMPLETE

Group By: ResourceStatus

Figure 14 — Stack Tracker: Resource Status

Final Report

Resource Status

PhysicalResourceld Status Recommendation
orphanedresourcetest-s3b41y- The stack using this resource was deleted, but the resource itself still remains.
15y9ym89e669a Recommmend reviewing this resource and deleting it fully if it is not needed
orphanedresourcetest-s3bSaecb- R
The resource was successfully deleted with its stack
4shdi2bbesOc 4
dynamocatalog This resource is currently in use
serve-Func-GBLPGOTIYPUK This resource is currently in use

serverlessrepo-AthenaDynamoDBConnecto-

2 This resource is currently in use
FunctionRole-1DRLIONMJQOQO

This section details the status of each resource. The resource status field has three possible

values:

e CREATE_COMPLETE — The resource and its stack are currently in use.

e DELETE_COMPLETE — The resource and its stack have been deleted.

e DELETED_SKIPPED - The stack the resource was a part of was deleted but the
resource still exists, meaning it has become orphaned.

Other Details

Resource Type

AWS:IAM:Policy

L— Aws:Lambda:Function

Group By: ResourceType

M AWS:S3:Bucket M AWS:Lambda:Function B AWS:IAM::Role

Figure 15 — Stack Tracker: Other Details

AW,

Count of Resources per Stack

3

DBConnector OrphanedResourceTest

StackName

The dashboard also gives a breakdown of how many of each type of resource is being used in
the AWS account as well as how many resources each stack contains.

Oisin Chelmiah

C00246745 17

Project Review

Specification Achievements

Final Report

Specification

Achieved

Logging to Database —
Core

Logging to Security Hub — Non-Core

Email —
Core

Text Message —
Non-Core

Displaying Cert Details —
Core

Analyse Signing Algorithms Used —
Non-Core

Displaying Resources —
Core

Filtering —
Non-Core

Exporting —
Non-Core

Sharing -

Non-Core

NNANANANENENPIANANAN

Table 1 — Specification Achievements

Possible Future Developments

Development

Details

Integrations with third-party tools

AWS Cert Alert could be integrated with
third-party security tools such as Splunk for
extra logging or ServiceNow to create tickets
for the vulnerabilities.

Automated certificate remediation

In addition to suggesting remediation
actions, the system could be enhanced to
automatically take corrective actions when
possible, such as renewing or updating
certificates.

Integration with AWS KMS

The system could be integrated with AWS
Key Management Service (KMS) to enable
users to centrally manage keys used for
certificate signing and encryption. This
would help ensure that keys are secure and

managed in compliance with industry
standards.

Table 2 — Possible Future Developments

Oisin Chelmiah C00246745 18

Final Report
General Issues
Issue Details Mitigation
Getting Certificates Had trouble getting | Created a mockCerts

certificates initially as | did
not have a website to assign

certificates to.

Lambda function which
contained an array of mock
certificates to use when
testing the system. A
sample mock certificate
can be viewed at Appendix
3

Analysing the Data

The dashboard
several recommendations for
the certificates and the stack
resources. When | initially | to the
generate
recommendations | had
trouble figuring out when to
analyse the data and create
these recommendations.

tried to

After some research, |
learned about Quick Sight
language, which is similar
programming
language implemented by
Excel. Using Quick Sight
language allowed me to
perform some code-like
functions on the dashboard
itself and hence generate
the recommendations |
needed.

provides

these

Displaying the Data

The certificate data stored in
ACM was tough to read and
understand. There was a lot of | the data into
unnecessary data that would
be hard for an inexperienced

user to read.

To make it easier to read, |
decided on breaking down
separate
segments and presenting
each of these segments
separately.

Table 3 — General Issues

Learning Outcomes

Learning Outcome

Description

Proficient with New Languages

Before starting the project | had very little
experience with Python, but after a few
months of development | feel very confident
in my ability in the language. | also got to
learn a new language — Quick Sight language
—which I was able to pick up quickly due to
my prior programming knowledge.

Certificate Management

Throughout the development of this project |
learned a lot about certificates and certificate
management which built upon my
knowledge about TLS certificate, encryption
algorithms, signature algorithms, certificate
authorities,

AWS Proficiency

By developing this system completely in
AWS | exponentially improved my
knowledge and skills within the platform.

Table 4 — Learning Outcomes

Oisin Chelmiah

C00246745 19

Final Report
Testing
Test Number | Details Result
1 Created an array with one mock certificate. PASS
2 Added multiple certificates to the array. PASS
3 Set some certificates in the with an expired expiration date. PASS
4 Set some certificates in the with an expiration date within 45 | PASS
days.
5 Changed signature algorithms of some certificates. PASS
6 Changed key algorithms of some certificates. PASS
7 Changed some certificates to be native instead of imported. PASS
8 Changed some of the certificates to show as not in use. PASS
9 Created a Cloud Formation stack with resources. PASS
10 Successfully deleted the stack and all its resources PASS
11 Created a new stack, deleted the stack without deleting the | PASS
resources.
12 Combined the Cert Alert and Stack Tracker functionalities into | PASS
one system.
Table 5 — Testing
Oisin Chelmiah C00246745 20

Final Report

Summary & Conclusion

In conclusion, the AWS Cert Alert project has been a valuable learning experience in the
design, implementation, and deployment of a comprehensive certificate management system
within AWS. Through our use of AWS serverless technologies, including Lambda functions,
Step Functions, DynamoDB, and QuickSight Dashboard, we have created a highly scalable,
reliable, and cost-effective system that provides valuable insights into certificate expiration,
resource management, and potential security risks.

Looking forward, there are several possible avenues for future development and improvement
of the system. These include expanding the system to automated remediations, integrating with
third-party services for enhanced functionality, and incorporating Amazon KMSs. | believe
that the project has tremendous potential for further innovation and look forward to seeing its
continued success in the future.

Overall, the AWS Cert Alert project has been an exciting and rewarding experience, and | am
grateful for the opportunity to have worked on such a challenging and impactful project. | are
confident that the skills and knowledge | have gained through this project will serve me well
in my future endeavours, and | look forward to applying them to new challenges and
opportunities.

Oisin Chelmiah C00246745 21

Plagiarism Declaration

Final Report

| declare that all material in this submission is entirely my own work except where duly
acknowledged. | have cited the sources of all quotations, paraphrases, summaries of
information, tables, diagrams or other material; including software and other electronic media
in which intellectual property rights may reside.

| have provided a complete bibliography of all works and sources used in the preparation of
this submission. I understand that failure to comply with the Institute’s regulations governing

plagiarism constitute a serious offence.
Student Name: Oisin Chelmiah

Student Number: C00246745
Date: 17/04/2023

Signed: O o (4d .M

Oisin Chelmiah

C00246745

22

Glossary

AWS — Amazon Web Services

TLS — Transport Layer Security

SNS - Simple Notification Service
ACM — Amazon Certificate Manager
ARN — Amazon Resource Number

KMS — Key Management System

Oisin Chelmiah

C00246745

Final Report

23

Final Report

Appendix 1 — Cert Alert Page

Oisin Chelmiah

C00246745 24

e Final Report
TU ==
Iimmediabe Recommendations
Pirsiva Mesorzald i Ty ® dati
il it i - 54Ty 1 Sl BIE R LLCEAE TR Thati risgnore i ik Ly DAPHAMED, jhiiis shalistin this rssuirca fully
Resources
Log= s Recurcald [—— [T - " 5 Staech
ConmecterConfiy dyramocatalog AwSclambdafunction CREATE_COMPLETE i erialiy b
FumticEncutionfoley s Fue -GALPLITI YR AwsclaMPlicy CREATE_COMPLETE " R N S —
Funciloafok N hersaly i s Puunctioafinks | BRLEHILCHOS ANEA CREXTE_COMPLETE N — R
Lap&TY anpbardnbcuniil-i0byTy-1 5 rn A MEE D AANS S B DELETE_SEIMPED T e T e
SIBEAECH opbarsdnscurcetimt-a 3 b b i il AANS =S B DELETE_COMPLETE D plured Pasoue: #Test
Resouree Status Hesouree Status
Basoumcy Stalug Py catkmcurcld Skt M smmandatzn
W DELETE_SIPMED aptenednssurtetest-ube 1y The stack using this nscuncs was. delerted, But e resource sl still remaies.
1 5yiym Bl a N Recormmimend evswing this il [| it el
I DELETE_COMPLETE [dleting i Fully nE
W CREATE_COMPLETE e nscurt et h Seecbe
The risinsres wis s cosifully delstod with s stk
dynamecatalog Thiss risignsres b cumintly in use

This ricinsncs b curminitly i e

Group By: ResouroeStatus

Resource Type

5

ANSLambdafanciian

Group By: ResourcoType

W Awscsicbeckat [l AEclambdicFusction [l AWSciAMAols

Appendix 2 — Stack Tracker Page

Oisin Chelmiah C00246745

el - At e Dy m el BCon sl or

Thiss resignsres b cumently in use

Cownt of Resources per Stack

Drphused S ars Tk

25

Final Report

import json

import boto3
def lambda_handler(event, context):

account = event

"CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID",
"DomainName": "example.com",
"SubjectAlternativeNameSummaries": [
"example.com",
"other.example.com"
1,
"HasAdditionalSubjectAlternativeNames": "false",
"Status": "ISSUED",
"Type": "NATIVE",
"KeyAlgorithm": "RSA_2048",
"SignatureAlgorithm": "sha256WithRSAEncryption”,
"KeyUsages": [
"DIGITAL_SIGNATURE",
"KEY_ENCIPHERMENT"
1,
"ExtendedKeyUsages": [
"NONE"
1,
"InUse": "True",
"RenewalEligibility": "INELIGIBLE",
"NotBefore": "2022-06-14T23:42:49+00:00",
"NotAfter": "2032-06-11T723:42:49+00:00",
"CreatedAt": "2022-08-25T19:28:05.531000+00:00",
"ImportedAt": "2022-08-25T19:28:05.544000+00:00",
"ExpiresOn": "2024-04-26T00:00:00.000000+00:00"

"CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID2",

"DomainName": "example2.com",
"SubjectAlternativeNameSummaries”: [
"example2.com",
"other2.example.com"
1,
"HasAdditionalSubjectAlternativeNames": "false",
"Status": "ISSUED",
"Type": "IMPORTED",
"KeyAlgorithm": "RSA_2048",
"SignatureAlgorithm": "md5WithRSAEncryption”,
"KeyUsages": [

Oisin Chelmiah C00246745

Final Report

"DIGITAL_SIGNATURE",

"KEY_ENCIPHERMENT"
1
"ExtendedKeyUsages": [

"NONE"
1,
"InUse": "False",
"RenewalEligibility": "INELIGIBLE",
"NotBefore": "2022-06-14T23:42:49+00:00",
"NotAfter": "2023-01-31T23:42:49+00:00",
"CreatedAt": "2022-08-25T19:28:05.531000+00:00",
"ImportedAt": "2022-08-25T19:28:05.544000+00:00",
"ExpiresOn": "2023-01-31T00:00:00.000000+00:00"

"CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID3"

"DomainName": "example3.com",
"SubjectAlternativeNameSummaries": [
"example3.com",
"other.example3.com"
1,
"HasAdditionalSubjectAlternativeNames": "false",
"Status": "ISSUED",
"Type": "IMPORTED",
"KeyAlgorithm": "RSA_2048",
"SignatureAlgorithm": "sha256WithRSAEncryption",
"KeyUsages": [
"DIGITAL_SIGNATURE",
"KEY_ENCIPHERMENT"
1,
"ExtendedKeyUsages": [
"NONE"
1,
"InUse": "False",
"RenewalEligibility": "INELIGIBLE",
"NotBefore": "2022-06-14T23:42:49+00:00",
"NotAfter": "2032-06-11T723:42:49+00:00",
"CreatedAt": "2022-08-25T719:28:05.531000+00:00",
"ImportedAt": "2022-08-25T19:28:05.544000+00:00",
"ExpiresOn": "2023-02-01T00:00:00.000000+00:00"

"CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID4",

"DomainName": "example4.com",

"SubjectAlternativeNameSummaries": [
"example4.com",

"other.example4.com"

Oisin Chelmiah C00246745

Final Report

"HasAdditionalSubjectAlternativeNames": "false",
"Status": "ISSUED",
“Type": "IMPORTED",
"KeyAlgorithm": "EC_prime256v1",
"SignatureAlgorithm": "ecdsa-with-SHA256",
"KeyUsages": [

"DIGITAL_SIGNATURE",

"KEY_ENCIPHERMENT"
1,
"ExtendedKeyUsages": [

"NONE"
1,
"InUse": "True",
"RenewalEligibility": "INELIGIBLE",
"NotBefore": "2022-06-14T23:42:49+00:00",
"NotAfter": "2032-06-11T723:42:49+00:00",
"CreatedAt": "2022-08-25T719:28:05.531000+00:00",
"ImportedAt": "2022-08-25T19:28:05.544000+00:00",
"ExpiresOn": "2024-03-01T00:00:00.000000+00:00"

"CertificateArn”: "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID5",
"DomainName": "example5.com",
"SubjectAlternativeNameSummaries": [
"example5.com",
"other.example5.com"
1,
"HasAdditionalSubjectAlternativeNames": "false",
"Status": "ISSUED",
"Type": "NATIVE",
"KeyAlgorithm": "RSA_2048",
"SignatureAlgorithm": "sha224WithRSAEncryption",
"KeyUsages": [
"DIGITAL_SIGNATURE",
"KEY_ENCIPHERMENT"
1,
"ExtendedKeyUsages": [
"NONE"
1
"InUse": "True",
"RenewalEligibility": "INELIGIBLE",
"NotBefore": "2022-06-14T23:42:49+00:00",
"NotAfter": "2032-06-11T723:42:49+00:00",
"CreatedAt": "2022-08-25T719:28:05.531000+00:00",
"ImportedAt": "2022-08-25T719:28:05.544000+00:00",
"ExpiresOn": "2023-04-20T00:00:00.000000+00:00"

Oisin Chelmiah C00246745

Final Report

return {
'statusCode’': 200,
"body': certs

Appendix 3 — mockCerts.py

import json

def lambda_handler(event, context):

aws_account_id = context.invoked_function_arn.split(":")[4]

return {
'statusCode': 200,
"body': aws_account_id

Appendix 4 — readAccount.py

import json
import boto3

def lambda_handler(event, context):
account = event

certs =
{
"CertificateArn": ,
"DomainName": ,
"SubjectAlternativeNameSummaries”: [

]J

"HasAdditionalSubjectAlternativeNames": ,

"Status": ,

"Type": B

"KeyAlgorithm": ,

"KeyUsages": [
"DIGITAL_SIGNATURE",
"KEY_ENCIPHERMENT"

]J

"ExtendedKeyUsages": [
"NONE"

]J

"InUse": ,

Oisin Chelmiah C00246745

Final Report

"RenewalEligibility": ,
"NotBefore": ,
"NotAfter": ,
"CreatedAt": ,
"ImportedAt":

return {
'statusCode': 200,
'body': certs

Appendix 5 — readCerts.py

import json
import boto3
from datetime import date, datetime

def lambda handler(event, context):
result = get_stacks(event, context)
return {
'statusCode': 200,
"body': result

get_stacks(event, context):
cf_client = boto3.client('cloudformation’)
response = cf_client.list_stacks()
stacks = response['StackSummaries']
for stack in stacks:
for resource in stack:
stack[resource] = str(stack[resource])

return stacks
Appendix 6 — listStacks.py

import json
import boto3

def lambda_handler(event, context):
result = scan_stack(event, context)
return {
'statusCode’': 200,
"body"': result

Oisin Chelmiah C00246745

Final Report

def scan_stack(event, context):
cf_client = boto3.client('cloudformation')
response = cf_client.describe_stack_resources(
StackName=event|['StackId'],
)
stack = response['StackResources']
for resource in stack:
for item in resource:
resource[item] = str(resource[item])

return stack
Appendix 7 — findOrphanedResources.py

import json
import boto3
from datetime import datetime, timedelta, timezone

def lambda_handler(event,context):
dynamodb = boto3.resource('dynamodb")
cert = event

table = dynamodb.Table('CertAlert")

cert["Renewal"] = check_expiry_date(cert)
response = table.put_item(
Item=cert
)
return {
'statusCode': 200,
'body': response

check_expiry_date(cert):
utc = timezone.utc

today = datetime.now().replace(tzinfo=utc)
time = datetime.now().isoformat(timespec="seconds")
now = datetime.strptime(time[0:10], '%Y-%m-%d")
expiry_days = timedelta(days=45)
expiryDate = datetime.strptime(cert['ExpiresOn'][0:10], '%Y-%m-%d")
expiry = expiryDate - now
if expiry < timedelta(days=9):
expiry = expiry*-1
expiryType = "This certificate has expired, please renew if
certificate is needed"
elif expiry < expiry_days:
expiryType = "Expiration date in the next 45 days, please renew"

Oisin Chelmiah C00246745

Final Report

else:
expiryType = "No renewal needed"

return expiryType
Appendix 8 — writeToDynamoDB.py

import json
import boto3

def lambda_handler(event,context):
dynamodb = boto3.resource('dynamodb")
resources = event

table = dynamodb.Table('OrphanedResources")

response = table.put_item(
Item=resources
)
return {
'statusCode’: 200,
'body': response

Appendix 9 — pushToDynamoDBOrphanedResources.py

import json
import boto3
import os

from datetime import datetime, timedelta, timezone
utc = timezone.utc

today = datetime.now().replace(tzinfo=utc)

time = datetime.now().isoformat(timespec="'seconds")
now = datetime.strptime(time[©:10], '%Y-%m-%d")
sh_time = today.strftime("%Y-%m-%dT%H:%M:%S.000Z")
expiry_days = timedelta(days=45)

def lambda_handler(event, context):

expiryDate = datetime.strptime(event['ExpiresOn'][0@:10], '%Y-%m-%d")
expiry = expiryDate - now
if expiry < expiry_days:

response = handle_single_cert(event, context.invoked_function_arn, expiry)
else:

response = "The current certificate does not have an upcoming expiration date"
return {

'statusCode': 200,

Oisin Chelmiah C00246745

Final Report

'body': response

def handle_single_cert(event, context_arn, expiry):
if expiry < timedelta(days=0):
expiry = expiry*-1
expiryType = "Expired"
result = 'The following certificate expired ' + str(expiry) + ' days ago:
event['DomainName’]
else:
result = 'The following certificate expires in ' + str(expiry) + ' days: ' +
event['DomainName’]
expiryType = "Upcoming Expiry"

log = log_finding_to_sh(event, context_arn, result, expiryType)

result = result + (' + event['CertificateArn'] + ') - + log

return result

log finding_to_sh(event, context_arn, message, expiryType):

account = (event['CertificateArn'][22:34])

sh_region = (event['CertificateArn'][12:21])

sh_hub_arn = "arn:aws:securityhub:{0}:{1}:hub/default".format(sh_region, account)
sh_product_arn = "arn:aws:securityhub:{0}:{1}:product/{1}/default”.format(sh_region,

account)

sh_client = boto3.client('securityhub', region_name = sh_region)
try:
sh_enabled = sh_client.describe_hub(HubArn = sh_hub_arn)

except Exception as error:
sh_enabled = None
print ('Default Security Hub product doesn\'t exist')

response = 'Security Hub disabled'’

cert_id = event['CertificateArn'][47:]
if sh_enabled:

new_findings = []

new_findings.append({
"SchemaVersion": "2018-10-08",
"Id": cert_id,
"ProductArn": sh_product_arn,
"GeneratorId": context_arn,
"AwsAccountId": account,
"Types": [

Oisin Chelmiah C00246745

Final Report

"Software and Configuration Checks/AWS Config Analysis"
1,
"CreatedAt": sh_time,
"UpdatedAt": sh_time,
"Severity": {

"Original™: '89.0°',

"Label": 'HIGH'
¥
"Title": 'Certificate expiration’',
"Description”: expiryType,
'Remediation’': {

'Recommendation’: {

'Text': message + '. A new certificate for ' + event['DomainName'] + '

should be imported to replace the existing imported certificate before expiration',

'Url': "https://console.aws.amazon.com/acm/home?region=" + sh_region +
"#/?id=" + cert_id
}
¥
'Resources’: [
{
"Id': cert_id,
'Type': 'ACM Certificate’,
'"Partition’': 'aws',

'Region': sh_region

1
"Compliance': {'Status': 'WARNING'}

1}

if new_findings:
try:
response = sh_client.batch_import_findings(Findings=new_findings)
if response['FailedCount'] > @:
print("Failed to import {} findings".format(response['FailedCount']))
except Exception as error:
print("Error: ", error)
raise

return json.dumps(response)

def get_sh_region(event_region):

if os.environ.get('SECURITY_HUB_REGION') is None:
sh_region_local = event_region

else:
sh_region_local = os.environ['SECURITY_HUB_REGION']

return sh_region_local
Appendix 10 — writeToSecurityHub.py

Oisin Chelmiah C00246745

Final Report

import json
import boto3
import os

from datetime import datetime, timedelta, timezone

utc = timezone.utc

today = datetime.now().replace(tzinfo=utc)

time = datetime.now().isoformat(timespec="'seconds")
now = datetime.strptime(time[0©:10], '%Y-%m-%d")
sh_time = today.strftime("%Y-%m-%dT%H:%M:%S.000Z")
expiry_days = timedelta(days=45)

def lambda_handler(event, context):
response = check_for_orphans(event, context)
return {
'statusCode’': 200,
'body': response

check_for_orphans(event, context):
if event['ResourceStatus'] == "DELETE_SKIPPED":

response = log finding_to_sh(event, context.invoked_function_arn)
else:

response = "Resource successfully deleted"

return response

log finding_to_sh(event, context_arn):

account = (event['StackId'][33:45])

sh_region = (event['StackId'][23:32])

sh_hub_arn = "arn:aws:securityhub:{@}:{1}:hub/default".format(sh_region, account)
sh_product_arn = "arn:aws:securityhub:{0}:{1}:product/{1}/default"”.format(sh_region,

account)

sh_client = boto3.client('securityhub', region_name = sh_region)
try:
sh_enabled = sh_client.describe_hub(HubArn = sh_hub_arn)

except Exception as error:
sh_enabled = None
print ('Default Security Hub product doesn\'t exist')

response = 'Security Hub disabled'’

if sh_enabled:

Oisin Chelmiah C00246745

Final Report

new_findings = []

new_findings.append({
"SchemaVersion": "2018-10-08",
"Id": event['PhysicalResourceld'],
"ProductArn": sh_product_arn,
"GeneratorId": context_arn,
"AwsAccountId": account,
"Types": [
"Software and Configuration Checks/AWS Config Analysis"
1,
"CreatedAt": sh_time,
"UpdatedAt": sh_time,
"Severity": {
"Original”: '89.0°',
"Label": 'HIGH'
¥
"Title": 'Orphaned Resource’,
"Description”: 'Resouce has been orphaned and is no longer in use',
'Remediation’': {
'Recommendation': {
'Text': 'The resource should be reviewed and deleted properly. If the
resource is a storage container, ensure the container is empty before attemting to
delete.’,

s
'Resources': [
{
'Id': event['PhysicalResourceld'],
'"Type': event['ResourceType'],
'"Partition': 'aws',

'Region': sh_region

1,
"Compliance': {'Status': 'WARNING'}

}

if new_findings:
try:
response = sh_client.batch_import_findings(Findings=new_findings)
if response['FailedCount'] > @:
print("Failed to import {} findings".format(response['FailedCount']))
except Exception as error:
print("Error: ", error)
raise

return json.dumps(response)

Oisin Chelmiah C00246745

Final Report

def get_sh_region(event_region):

if os.environ.get('SECURITY_HUB_REGION') is None:
sh_region_local = event_region

else:
sh_region_local = os.environ['SECURITY_HUB_REGION']

return sh_region local
Appendix 11 — writeOrphanedResourcesToSecurityHub.py

import json
import boto3

def lambda_handler(event, context):

client = boto3.client('sns")

snsArn = 'arn:aws:sns:us-east-1:916507989922:AWSCertAlert’

message = "Dear User,\nThe AWS Cert Alert Dashboard has been updated.
Please check the dashboard using the following link:\nhttps://us-east-
1.quicksight.aws.amazon.com/sn/dashboards/a57c@d4a-b5e0-45ca-ad7a-
8855dead939f"

response = client.publish(
TopicArn = snsArn,
Message = message ,
Subject="AWS Cert Alert Dashboard has been updated'

return {
'statusCode': 200,
'body': response

Appendix 12 — sendAlert.py

Oisin Chelmiah C00246745 37

