

AWS Cert Alert

Final Report

Oisín Chelmiah

C00246756

Supervisor:

Dr Keara Barrett

Final Report

Oisin Chelmiah C00246745 2

Abstract

This report outlines the design and implementation of a certificate management system within

Amazon Web Services (AWS) using a state machine with Lambda code. The system, aptly

named AWS Cert Alert, automates the process of gathering information about Transport Layer

Security (TLS) certificates stored in the account, logging expiring certificates in Security Hub,

passing certificate details to a DynamoDB database, updating a dashboard, and notifying users

of updates. Additionally, the system was expanded to include scanning Cloud Formation

stacks, logging orphaned resources in Security Hub, logging all resources in another

DynamoDB database, and updating a new page on the dashboard.

Final Report

Oisin Chelmiah C00246745 3

Acknowledgments

Before I get started, I’d like to thank a few people for helping me throughout the course of this

project.

Firstly, I’d like to thank my supervisor Dr Keara Barrett for providing guidance throughout the

project and keeping me on track.

I’d also like to thank my workplace mentors Shauna Bond and Rocia Fernandes from Unum

Technology Centre Ireland for helping me come up with the idea for this project while I was

on work placement.

Finally, I’d like to thank my family, friends, and my partner Evelyn Keane for helping me get

through the year with my sanity intact.

Final Report

Oisin Chelmiah C00246745 4

Table of Contents
ABSTRACT 2

ACKNOWLEDGMENTS 3

TABLE OF CONTENTS 4

TABLE OF FIGURES 5

INTRODUCTION 6

OVERVIEW 7

WHY DO THIS PROJECT? 7
PROJECT DESCRIPTION 8
PROJECT OUTLINE 9

Processing – Lambdas & State Machine 9
Logging – Dynamo Databases & Security Hub 10

Cert Alert Database 10
Stack Tracker Database Description 11
Security Hub 11

Notification – Email 12
Dashboard – Quick Sight Dashboard 13

Cert Alert Page 13
Stack Tracker Page 16

PROJECT REVIEW 18
Specification Achievements 18
Possible Future Developments 18
General Issues 19

LEARNING OUTCOMES 19
TESTING 20

SUMMARY & CONCLUSION 21

PLAGIARISM DECLARATION 22

GLOSSARY 23

APPENDICES 24

Final Report

Oisin Chelmiah C00246745 5

Table of Figures

Figure 1 – Cert Alert Logo 8
Figure 2 - Cert Alert State Machine 9
Figure 3 – Cert Alert Database 10
Figure 4 – Stack Tracker Database 11
Figure 5 – Security Hub 11
Figure 6 – SNS Email Notification 12
Figure 7 – Cert Alert: Immediate Recommendations 13
Figure 8 – Cert Alert: General Certificate Details 14
Figure 9 – Cert Alert: Certificates in Use 14
Figure 10 – Cert Alert: Signature Algorithm 15
Figure 11 – Cert Alert: Other Details 15
Figure 12 – Stack Tracker: Immediate Recommendations 16
Figure 13 – Stack Tracker: Resource Details 16
Figure 14 – Stack Tracker: Resource Status 17
Figure 15 – Stack Tracker: Other Details 17

Table 1 – Specification Achievements 18
Table 2 – Possible Future Developments 18
Table 3 – General Issues 19
Table 4 – Learning Outcomes 19
Table 5 – Testing 20

Appendix 1 – Cert Alert Page 24
Appendix 2 – Stack Tracker Page 25
Appendix 3 – mockCerts.py 29
Appendix 4 – readAccount.py 29
Appendix 5 – readCerts.py 30
Appendix 6 – listStacks.py 30
Appendix 7 – findOrphanedResources.py 31
Appendix 8 – writeToDynamoDB.py 32
Appendix 9 – pushToDynamoDBOrphanedResources.py 32
Appendix 10 – writeToSecurityHub.py 34
Appendix 11 – writeOrphanedResourcesToSecurityHub.py 37
Appendix 12 – sendAlert.py 37

Final Report

Oisin Chelmiah C00246745 6

Introduction

This report provides an overview of the Cert Alert system created within AWS. The system

uses a state machine with Lambda code to automate the process of gathering information about

certificates in use by AWS accounts, logging expiring certificates in Security Hub, passing

certificate details to a DynamoDB database, updating a dashboard, and notifying users of

updates.

In addition to the initial functionality, the system was expanded to include scanning Cloud

Formation stacks, logging orphaned resources in Security Hub, logging all resources in another

DynamoDB database, and updating a new page on the dashboard.

This report outlines the design and implementation of the system, as well as any issues faced

throughout production and any changes that were made along the way. Additionally, it

discusses potential areas for future development and improvement.

Final Report

Oisin Chelmiah C00246745 7

Overview

Why do this project?

Organizations are increasingly using cloud infrastructure to manage their IT infrastructure, and

AWS is a popular cloud service provider. However, the management of these certificates and

resources can become increasingly complex, especially when dealing with large-scale

environments. AWS provides various tools for certificate management, such as Certificate

Manager and Security Hub, but they still have limitations in terms of providing an overall view

of certificate and resource status across multiple accounts. AWS's current tools for managing

certificates and resources are limited and often require manual intervention, which can lead to

errors and vulnerabilities. This can result in potential security issues and compliance violations,

which can be costly for organizations in terms of money and reputation.

Organisations often face challenges with certificate management and resource management

such as expired certificates, orphaned resources, and insecure signature algorithms. Best case

scenario, these issues can cause operational downtime, security risks, and compliance issues,

all of which can have a negative impact on the organisation's reputation and finances. In

extreme cases, an expired certificate can cause the collapse of a whole organisation’s service.

A recent example of an expired certificate having a huge effect on an organisation can be

viewed in a report by the Irish Times1 about a major incident report that was submitted to the

Department of Communications. According to the report, the 999 Emergency Call Answering

Service as well as a fallback automated answering system lost all functionality after the

certificate that the operators used to communicate with the computer system expired. Over 216

callers were affected, even though the system was only inoperable for an hour and twelve

minutes, proving that certificate expiry not only affects the organisation but also the public that

depend on the organisation.

AWS Cert Alert was developed to address these challenges by automating and streamlining

the process of managing certificates, resources, and CloudFormation stacks within AWS

accounts. The system utilizes a state machine with Lambda code to gather information about

certificates in use, log expiring certificates in Security Hub, pass certificate details to a

DynamoDB database, update a dashboard created with QuickSight Dashboard, and notify users

of updates via email using Simple Notification Service.

With AWS Cert Alert, organisations can have a better overall view of the status of their

certificates and resources, reducing the risk of operational downtime, security risks, and

compliance issues. The system provides a central point for certificate and resource

management, allowing organisations to quickly identify and address any issues that may arise.

This saves time and resources, allowing organisations to focus on their core business

operations.

1 https://www.irishexaminer.com/news/arid-40967141.html

https://www.irishexaminer.com/news/arid-40967141.html

Final Report

Oisin Chelmiah C00246745 8

Project Description

Figure 1 – Cert Alert Logo

AWS Cert Alert is a comprehensive certificate management system designed to automate and

streamline the process of managing certificates, resources, and Cloud Formation stacks within

AWS accounts. The system utilizes a state machine with Lambda code to gather information

about certificates in use, log expiring certificates in Security Hub, pass certificate details to a

DynamoDB database, update a dashboard created with Quick Sight Dashboard, and notify

users of updates via email using Simple Notification Service (SNS).

In addition to the initial functionality, AWS Cert Alert was expanded to include scanning Cloud

Formation stacks, logging orphaned resources in Security Hub, logging all resources in another

DynamoDB database, and updating a new page on the dashboard. This section of the system is

called Stack Tracker to differentiate it from the Cert Alert part of the system.

To add to the certificate management aspect of the system, the system was further enhanced to

check whether certificates are in use and evaluate the security of the signature algorithm being

used. Based on the evaluation, the system makes a suggestion as to whether the certificate

should be renewed, removed, or if the signature algorithm should be updated. This functionality

provides users with valuable insights into the security of their certificates and enables them to

take appropriate action to maintain a secure environment.

These additions provide enhanced security and organisation for the AWS accounts associated

with the system. With the ability to detect expiring certificates, evaluate the security of the

signature algorithm being used, and take automated actions to maintain a secure environment,

AWS Cert Alert is a valuable tool for organisations looking to maintain secure and organized

AWS environments.

Final Report

Oisin Chelmiah C00246745 9

Project Outline

Processing – Lambdas & State Machine

The main processing part of the system is performed by an AWS Step Functions state machine,

depicted below. Each block represents one of the functions used by the state machine. These

functions are written in Python 3.11 and are stored in AWS Lambda. The state machine is

configured to run on a schedule by Amazon Event Bridge.

Figure 2 - Cert Alert State Machine

The state machine functions as follows:

• First, the state machine will check what AWS account it is running in.

• The state machine will then split into two parallel streams. One stream will scan all the

TLS certificates stored in the account, the other stream will get the details of all

resources currently allocated to stacks stored in Cloud Formation.

• For each certificate, the state machine will store all the details of the certificate in the

Cert Alert database. Any certificates that have expired or have an upcoming expiry date

are then logged as vulnerabilities in Security Hub.

Final Report

Oisin Chelmiah C00246745 10

• For each stack resource, the state machine will store the details of the resource in the

Stack Tracker database. Any resources that have become orphaned are logged as

vulnerabilities in Security Hub.

• Once all the processing has been complete, the Cert Alert dashboard will automatically

update itself based on the data stored in the databases. An email notification is then sent

to a user specified during the creation of the system to notify them that the dashboard

has been updated.

The way the state machine is designed allows it to be updated with ease. Any new

functionalities can be added in parallel to the already existing functionalities without altering

them. This ensures that the system is adaptable and scalable.

Logging – Dynamo Databases & Security Hub

The logging functionality of the system is split into two parts:

• Logging all certificate and resource details in databases

• Logging certificate expiry and orphaned resource vulnerabilities in Security Hub

Certificate details are stored in the Cert Alert database and stack resource details are stored in

the Stack Tracker database. The benefit of storing these details in databases is that they can

now be accessed by the dashboard part of the Cert Alert system.

Cert Alert Database

Figure 3 – Cert Alert Database

The data stored in the Cert Alert databases is taken directly from whatever is stored in Amazon

Certificate Manager (ACM). Certificate details include certificate Amazon Resource Number

(ARN), domain name, creation and expiration dates, key and signature algorithms, and contains

a lot of extra data that can be hard to read, especially for anyone new to certificate management.

The dashboard section of the system takes in this data and displays it in an easy-to-read format

as well as highlighting the most important details of each certificate.

Final Report

Oisin Chelmiah C00246745 11

Stack Tracker Database Description

Figure 4 – Stack Tracker Database

The Stack Tracker database contains details of resources stored in Cloud Formation stacks. A

CloudFormation stack is a collection of AWS resources that you can manage as a single unit.

Security Hub

Figure 5 – Security Hub

Security Hub is an AWS service that scans AWS accounts for vulnerabilities and stores these

vulnerabilities in a log. My system adds to this service by creating three logs for vulnerabilities

that Security Hub does not currently scan for:

• Certificate Expired – A certificate has passed its expiration date and needs to be

renewed.

• Certificate with Upcoming Expiry – A certificate has not expired yet, but its expiry date

is within 45 days.

• Orphaned Resource – A resource that was part of a Cloud Formation stack where the

stack was deleted but the resource itself still exists.

Final Report

Oisin Chelmiah C00246745 12

Notification – Email

Figure 6 – SNS Email Notification

The email notification is sent using Amazon SNS. The email is sent as the last function of the

state machine and can be configured to be sent to multiple users or an email list if needed. The

email contains a link to the dashboard that can be viewed once the recipient logs into their

AWS account.

Final Report

Oisin Chelmiah C00246745 13

Dashboard – Quick Sight Dashboard

The dashboard is split into two pages, the Cert Alert page and the Stack Tracker page. The

pages in full can be viewed at Appendix 1 and Appendix 2. The section below breaks down

each page into its individual elements. The dashboard is fully customisable the owner of the

AWS account that the Cert Alert system is deployed in. The read only version of the dashboard

is the version that is sharable, however a user must have an AWS account to view the

dashboard. The dashboard can also be exported to a PDF file for easy sharing.

Cert Alert Page

Immediate Recommendations

Figure 7 – Cert Alert: Immediate Recommendations

The Immediate Recommendations table is the very first thing the user sees when they open the

dashboard. It gives recommendations based on all of the data supplied on each certificate and

then shows any certificates that require immediate action. These certificates are certificates that

need to be renewed, certificates that are not in use. and certificates using insecure signature

algorithms.

Final Report

Oisin Chelmiah C00246745 14

General Certificate Details Table

Figure 8 – Cert Alert: General Certificate Details

This table displays key information on all of the certificates. Details include: certificate ARN,

domain name, expiry date, key algorithm, signature algorithm, whether the certificate is in use,

and whether the certificate is imported or a native AWS certificate.

Certificates in Use

Figure 9 – Cert Alert: Certificates in Use

The certificates in use table has a pie chart associated with it to show whether certificates are

in use in the AWS account.

Final Report

Oisin Chelmiah C00246745 15

Signature Algorithm

Figure 10 – Cert Alert: Signature Algorithm

The signature algorithm section gives details about what signature algorithms each certificate

is using and gives recommendations based on these algorithms. If a certificate is using an old

or insecure signature algorithm, the system will recommend to update or change the algorithm.

Other Details

Figure 11 – Cert Alert: Other Details

The dashboard also has charts depicting what key algorithms are in use and whether certificates

are native to AWS or imported from another certificate authority.

Final Report

Oisin Chelmiah C00246745 16

Stack Tracker Page

Immediate Recommendations

Figure 12 – Stack Tracker: Immediate Recommendations

Like the Cert Alert page, this table is the first thing that a user will see when accessing the

dashboard. It details resources any orphaned resources that should be reviewed and deleted if

necessary.

Resource Details

Figure 13 – Stack Tracker: Resource Details

This table contains all the details of resources stored in Cloud Formation stacks. Details

include: logical resource ID, physical resource ID, resource type, resource status, and the name

of the stack the resource is stored in.

Final Report

Oisin Chelmiah C00246745 17

Resource Status

Figure 14 – Stack Tracker: Resource Status

This section details the status of each resource. The resource status field has three possible

values:

• CREATE_COMPLETE – The resource and its stack are currently in use.

• DELETE_COMPLETE – The resource and its stack have been deleted.

• DELETED_SKIPPED – The stack the resource was a part of was deleted but the

resource still exists, meaning it has become orphaned.

Other Details

Figure 15 – Stack Tracker: Other Details

The dashboard also gives a breakdown of how many of each type of resource is being used in

the AWS account as well as how many resources each stack contains.

Final Report

Oisin Chelmiah C00246745 18

Project Review

Specification Achievements

Specification Achieved

Logging to Database –

Core

Logging to Security Hub – Non-Core

Email –

Core

Text Message –

Non-Core

Displaying Cert Details –

Core

Analyse Signing Algorithms Used –

Non-Core

Displaying Resources –

Core

Filtering –

Non-Core

Exporting –

Non-Core

Sharing –

Non-Core

Table 1 – Specification Achievements

Possible Future Developments

Development Details

Integrations with third-party tools AWS Cert Alert could be integrated with

third-party security tools such as Splunk for

extra logging or ServiceNow to create tickets

for the vulnerabilities.

Automated certificate remediation In addition to suggesting remediation

actions, the system could be enhanced to

automatically take corrective actions when

possible, such as renewing or updating

certificates.

Integration with AWS KMS The system could be integrated with AWS

Key Management Service (KMS) to enable

users to centrally manage keys used for

certificate signing and encryption. This

would help ensure that keys are secure and

managed in compliance with industry

standards.
Table 2 – Possible Future Developments

Final Report

Oisin Chelmiah C00246745 19

General Issues

Issue Details Mitigation

Getting Certificates Had trouble getting

certificates initially as I did

not have a website to assign

certificates to.

Created a mockCerts

Lambda function which

contained an array of mock

certificates to use when

testing the system. A

sample mock certificate

can be viewed at Appendix

3.

Analysing the Data The dashboard provides

several recommendations for

the certificates and the stack

resources. When I initially

tried to generate these

recommendations I had

trouble figuring out when to

analyse the data and create

these recommendations.

After some research, I

learned about Quick Sight

language, which is similar

to the programming

language implemented by

Excel. Using Quick Sight

language allowed me to

perform some code-like

functions on the dashboard

itself and hence generate

the recommendations I

needed.

Displaying the Data The certificate data stored in

ACM was tough to read and

understand. There was a lot of

unnecessary data that would

be hard for an inexperienced

user to read.

To make it easier to read, I

decided on breaking down

the data into separate

segments and presenting

each of these segments

separately.
Table 3 – General Issues

Learning Outcomes
Learning Outcome Description

Proficient with New Languages Before starting the project I had very little

experience with Python, but after a few

months of development I feel very confident

in my ability in the language. I also got to

learn a new language – Quick Sight language

– which I was able to pick up quickly due to

my prior programming knowledge.

Certificate Management Throughout the development of this project I

learned a lot about certificates and certificate

management which built upon my

knowledge about TLS certificate, encryption

algorithms, signature algorithms, certificate

authorities,

AWS Proficiency By developing this system completely in

AWS I exponentially improved my

knowledge and skills within the platform.
Table 4 – Learning Outcomes

Final Report

Oisin Chelmiah C00246745 20

Testing

Test Number Details Result

1 Created an array with one mock certificate. PASS

2 Added multiple certificates to the array. PASS

3 Set some certificates in the with an expired expiration date. PASS

4 Set some certificates in the with an expiration date within 45

days.

PASS

5 Changed signature algorithms of some certificates. PASS

6 Changed key algorithms of some certificates. PASS

7 Changed some certificates to be native instead of imported. PASS

8 Changed some of the certificates to show as not in use. PASS

9 Created a Cloud Formation stack with resources. PASS

10 Successfully deleted the stack and all its resources PASS

11 Created a new stack, deleted the stack without deleting the

resources.

PASS

12 Combined the Cert Alert and Stack Tracker functionalities into

one system.

PASS

Table 5 – Testing

Final Report

Oisin Chelmiah C00246745 21

Summary & Conclusion

In conclusion, the AWS Cert Alert project has been a valuable learning experience in the

design, implementation, and deployment of a comprehensive certificate management system

within AWS. Through our use of AWS serverless technologies, including Lambda functions,

Step Functions, DynamoDB, and QuickSight Dashboard, we have created a highly scalable,

reliable, and cost-effective system that provides valuable insights into certificate expiration,

resource management, and potential security risks.

Looking forward, there are several possible avenues for future development and improvement

of the system. These include expanding the system to automated remediations, integrating with

third-party services for enhanced functionality, and incorporating Amazon KMSs. I believe

that the project has tremendous potential for further innovation and look forward to seeing its

continued success in the future.

Overall, the AWS Cert Alert project has been an exciting and rewarding experience, and I am

grateful for the opportunity to have worked on such a challenging and impactful project. I are

confident that the skills and knowledge I have gained through this project will serve me well

in my future endeavours, and I look forward to applying them to new challenges and

opportunities.

Final Report

Oisin Chelmiah C00246745 22

Plagiarism Declaration

I declare that all material in this submission is entirely my own work except where duly

acknowledged. I have cited the sources of all quotations, paraphrases, summaries of

information, tables, diagrams or other material; including software and other electronic media

in which intellectual property rights may reside.

I have provided a complete bibliography of all works and sources used in the preparation of

this submission. I understand that failure to comply with the Institute’s regulations governing

plagiarism constitute a serious offence.

Student Name: Oisín Chelmiah

Student Number: C00246745

Date: 17/04/2023

Signed:

Final Report

Oisin Chelmiah C00246745 23

Glossary

AWS – Amazon Web Services

TLS – Transport Layer Security

SNS – Simple Notification Service

ACM – Amazon Certificate Manager

ARN – Amazon Resource Number

KMS – Key Management System

Final Report

Oisin Chelmiah C00246745 24

Appendices

Appendix 1 – Cert Alert Page

Final Report

Oisin Chelmiah C00246745 25

Appendix 2 – Stack Tracker Page

Final Report

Oisin Chelmiah C00246745 26

import json

import boto3

def lambda_handler(event, context):

 account = event

 certs = [

 {

 "CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID",

 "DomainName": "example.com",

 "SubjectAlternativeNameSummaries": [

 "example.com",

 "other.example.com"

],

 "HasAdditionalSubjectAlternativeNames": "false",

 "Status": "ISSUED",

 "Type": "NATIVE",

 "KeyAlgorithm": "RSA_2048",

 "SignatureAlgorithm": "sha256WithRSAEncryption",

 "KeyUsages": [

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": "True",

 "RenewalEligibility": "INELIGIBLE",

 "NotBefore": "2022-06-14T23:42:49+00:00",

 "NotAfter": "2032-06-11T23:42:49+00:00",

 "CreatedAt": "2022-08-25T19:28:05.531000+00:00",

 "ImportedAt": "2022-08-25T19:28:05.544000+00:00",

 "ExpiresOn": "2024-04-26T00:00:00.000000+00:00"

 },

 {

 "CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID2",

 "DomainName": "example2.com",

 "SubjectAlternativeNameSummaries": [

 "example2.com",

 "other2.example.com"

],

 "HasAdditionalSubjectAlternativeNames": "false",

 "Status": "ISSUED",

 "Type": "IMPORTED",

 "KeyAlgorithm": "RSA_2048",

 "SignatureAlgorithm": "md5WithRSAEncryption",

 "KeyUsages": [

Final Report

Oisin Chelmiah C00246745 27

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": "False",

 "RenewalEligibility": "INELIGIBLE",

 "NotBefore": "2022-06-14T23:42:49+00:00",

 "NotAfter": "2023-01-31T23:42:49+00:00",

 "CreatedAt": "2022-08-25T19:28:05.531000+00:00",

 "ImportedAt": "2022-08-25T19:28:05.544000+00:00",

 "ExpiresOn": "2023-01-31T00:00:00.000000+00:00"

 },

 {

 "CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID3",

 "DomainName": "example3.com",

 "SubjectAlternativeNameSummaries": [

 "example3.com",

 "other.example3.com"

],

 "HasAdditionalSubjectAlternativeNames": "false",

 "Status": "ISSUED",

 "Type": "IMPORTED",

 "KeyAlgorithm": "RSA_2048",

 "SignatureAlgorithm": "sha256WithRSAEncryption",

 "KeyUsages": [

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": "False",

 "RenewalEligibility": "INELIGIBLE",

 "NotBefore": "2022-06-14T23:42:49+00:00",

 "NotAfter": "2032-06-11T23:42:49+00:00",

 "CreatedAt": "2022-08-25T19:28:05.531000+00:00",

 "ImportedAt": "2022-08-25T19:28:05.544000+00:00",

 "ExpiresOn": "2023-02-01T00:00:00.000000+00:00"

 },

 {

 "CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID4",

 "DomainName": "example4.com",

 "SubjectAlternativeNameSummaries": [

 "example4.com",

 "other.example4.com"

],

Final Report

Oisin Chelmiah C00246745 28

 "HasAdditionalSubjectAlternativeNames": "false",

 "Status": "ISSUED",

 "Type": "IMPORTED",

 "KeyAlgorithm": "EC_prime256v1",

 "SignatureAlgorithm": "ecdsa-with-SHA256",

 "KeyUsages": [

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": "True",

 "RenewalEligibility": "INELIGIBLE",

 "NotBefore": "2022-06-14T23:42:49+00:00",

 "NotAfter": "2032-06-11T23:42:49+00:00",

 "CreatedAt": "2022-08-25T19:28:05.531000+00:00",

 "ImportedAt": "2022-08-25T19:28:05.544000+00:00",

 "ExpiresOn": "2024-03-01T00:00:00.000000+00:00"

 },

 {

 "CertificateArn": "arn:aws:acm:us-east-1:916507989922:certificate/certificate_ID5",

 "DomainName": "example5.com",

 "SubjectAlternativeNameSummaries": [

 "example5.com",

 "other.example5.com"

],

 "HasAdditionalSubjectAlternativeNames": "false",

 "Status": "ISSUED",

 "Type": "NATIVE",

 "KeyAlgorithm": "RSA_2048",

 "SignatureAlgorithm": "sha224WithRSAEncryption",

 "KeyUsages": [

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": "True",

 "RenewalEligibility": "INELIGIBLE",

 "NotBefore": "2022-06-14T23:42:49+00:00",

 "NotAfter": "2032-06-11T23:42:49+00:00",

 "CreatedAt": "2022-08-25T19:28:05.531000+00:00",

 "ImportedAt": "2022-08-25T19:28:05.544000+00:00",

 "ExpiresOn": "2023-04-20T00:00:00.000000+00:00"

 }

]

Final Report

Oisin Chelmiah C00246745 29

 return {

 'statusCode': 200,

 'body': certs

 }

Appendix 3 – mockCerts.py

import json

def lambda_handler(event, context):

 aws_account_id = context.invoked_function_arn.split(":")[4]

 # print(aws_account_id)

 return {

 'statusCode': 200,

 'body': aws_account_id

 }
Appendix 4 – readAccount.py

import json

import boto3

def lambda_handler(event, context):

 account = event

 certs = [

 {

 "CertificateArn": ,

 "DomainName": ,

 "SubjectAlternativeNameSummaries": [

],

 "HasAdditionalSubjectAlternativeNames": ,

 "Status": ,

 "Type": ,

 "KeyAlgorithm": ,

 "KeyUsages": [

 "DIGITAL_SIGNATURE",

 "KEY_ENCIPHERMENT"

],

 "ExtendedKeyUsages": [

 "NONE"

],

 "InUse": ,

Final Report

Oisin Chelmiah C00246745 30

 "RenewalEligibility": ,

 "NotBefore": ,

 "NotAfter": ,

 "CreatedAt": ,

 "ImportedAt":

 }

]

 return {

 'statusCode': 200,

 'body': certs

 }
Appendix 5 – readCerts.py

import json

import boto3

from datetime import date, datetime

def lambda_handler(event, context):

 result = get_stacks(event, context)

 return {

 'statusCode': 200,

 'body': result

 #'body': json.dumps(result, default=str)

 }

def get_stacks(event, context):

 cf_client = boto3.client('cloudformation')

 response = cf_client.list_stacks()

 stacks = response['StackSummaries']

 for stack in stacks:

 for resource in stack:

 stack[resource] = str(stack[resource])

 return stacks
Appendix 6 – listStacks.py

import json

import boto3

def lambda_handler(event, context):

 result = scan_stack(event, context)

 return {

 'statusCode': 200,

 'body': result

 }

Final Report

Oisin Chelmiah C00246745 31

def scan_stack(event, context):

 cf_client = boto3.client('cloudformation')

 response = cf_client.describe_stack_resources(

 StackName=event['StackId'],

)

 stack = response['StackResources']

 for resource in stack:

 for item in resource:

 resource[item] = str(resource[item])

 return stack
Appendix 7 – findOrphanedResources.py

import json

import boto3

from datetime import datetime, timedelta, timezone

def lambda_handler(event,context):

 dynamodb = boto3.resource('dynamodb')

 cert = event

 #table name

 table = dynamodb.Table('CertAlert')

 #inserting values into table

 cert["Renewal"] = check_expiry_date(cert)

 response = table.put_item(

 Item=cert

)

 return {

 'statusCode': 200,

 'body': response

 }

def check_expiry_date(cert):

 utc = timezone.utc

 # make today timezone aware

 today = datetime.now().replace(tzinfo=utc)

 time = datetime.now().isoformat(timespec='seconds')

 now = datetime.strptime(time[0:10], '%Y-%m-%d')

 expiry_days = timedelta(days=45)

 expiryDate = datetime.strptime(cert['ExpiresOn'][0:10], '%Y-%m-%d')

 expiry = expiryDate - now

 if expiry < timedelta(days=0):

 expiry = expiry*-1

 expiryType = "This certificate has expired, please renew if

certificate is needed"

 elif expiry < expiry_days:

 expiryType = "Expiration date in the next 45 days, please renew"

Final Report

Oisin Chelmiah C00246745 32

 else:

 expiryType = "No renewal needed"

 return expiryType
Appendix 8 – writeToDynamoDB.py

import json

import boto3

def lambda_handler(event,context):

 dynamodb = boto3.resource('dynamodb')

 resources = event

 #table name

 table = dynamodb.Table('OrphanedResources')

 #inserting values into table

 response = table.put_item(

 Item=resources

)

 return {

 'statusCode': 200,

 'body': response

 }
Appendix 9 – pushToDynamoDBOrphanedResources.py

import json

import boto3

import os

from datetime import datetime, timedelta, timezone

utc = timezone.utc

make today timezone aware

today = datetime.now().replace(tzinfo=utc)

time = datetime.now().isoformat(timespec='seconds')

now = datetime.strptime(time[0:10], '%Y-%m-%d')

sh_time = today.strftime("%Y-%m-%dT%H:%M:%S.000Z")

expiry_days = timedelta(days=45)

def lambda_handler(event, context):

 # check the expiry window before logging to Security Hub

 expiryDate = datetime.strptime(event['ExpiresOn'][0:10], '%Y-%m-%d')

 expiry = expiryDate - now

 if expiry < expiry_days:

 response = handle_single_cert(event, context.invoked_function_arn, expiry)

 else:

 response = "The current certificate does not have an upcoming expiration date"

 return {

 'statusCode': 200,

Final Report

Oisin Chelmiah C00246745 33

 'body': response

 }

def handle_single_cert(event, context_arn, expiry):

 if expiry < timedelta(days=0):

 expiry = expiry*-1

 expiryType = "Expired"

 result = 'The following certificate expired ' + str(expiry) + ' days ago: ' +

event['DomainName']

 else:

 result = 'The following certificate expires in ' + str(expiry) + ' days: ' +

event['DomainName']

 expiryType = "Upcoming Expiry"

 log = log_finding_to_sh(event, context_arn, result, expiryType)

 result = result + ' (' + event['CertificateArn'] + ') - ' + log

 return result

def log_finding_to_sh(event, context_arn, message, expiryType):

 # setup for security hub

 account = (event['CertificateArn'][22:34])

 sh_region = (event['CertificateArn'][12:21])

 sh_hub_arn = "arn:aws:securityhub:{0}:{1}:hub/default".format(sh_region, account)

 sh_product_arn = "arn:aws:securityhub:{0}:{1}:product/{1}/default".format(sh_region,

account)

 # check if security hub is enabled, and if the hub arn exists

 sh_client = boto3.client('securityhub', region_name = sh_region)

 try:

 sh_enabled = sh_client.describe_hub(HubArn = sh_hub_arn)

 # the previous command throws an error indicating the hub doesn't exist or lambda

doesn't have rights to it so it will stop attempting to use it

 except Exception as error:

 sh_enabled = None

 print ('Default Security Hub product doesn\'t exist')

 response = 'Security Hub disabled'

 # This is used to generate the URL to the cert in the Security Hub Findings to link

directly to it

 cert_id = event['CertificateArn'][47:]

 if sh_enabled:

 # set up a new findings list

 new_findings = []

 # add expiring certificate to the new findings list

 new_findings.append({

 "SchemaVersion": "2018-10-08",

 "Id": cert_id,

 "ProductArn": sh_product_arn,

 "GeneratorId": context_arn,

 "AwsAccountId": account,

 "Types": [

Final Report

Oisin Chelmiah C00246745 34

 "Software and Configuration Checks/AWS Config Analysis"

],

 "CreatedAt": sh_time,

 "UpdatedAt": sh_time,

 "Severity": {

 "Original": '89.0',

 "Label": 'HIGH'

 },

 "Title": 'Certificate expiration',

 "Description": expiryType,

 'Remediation': {

 'Recommendation': {

 'Text': message + '. A new certificate for ' + event['DomainName'] + '

should be imported to replace the existing imported certificate before expiration',

 'Url': "https://console.aws.amazon.com/acm/home?region=" + sh_region +

"#/?id=" + cert_id

 }

 },

 'Resources': [

 {

 'Id': cert_id,

 'Type': 'ACM Certificate',

 'Partition': 'aws',

 'Region': sh_region

 }

],

 'Compliance': {'Status': 'WARNING'}

 })

 # push any new findings to security hub

 if new_findings:

 try:

 response = sh_client.batch_import_findings(Findings=new_findings)

 if response['FailedCount'] > 0:

 print("Failed to import {} findings".format(response['FailedCount']))

 except Exception as error:

 print("Error: ", error)

 raise

 return json.dumps(response)

function to setup the sh region

def get_sh_region(event_region):

 # security hub findings may need to go to a different region so set that here

 if os.environ.get('SECURITY_HUB_REGION') is None:

 sh_region_local = event_region

 else:

 sh_region_local = os.environ['SECURITY_HUB_REGION']

 return sh_region_local
Appendix 10 – writeToSecurityHub.py

Final Report

Oisin Chelmiah C00246745 35

import json

import boto3

import os

from datetime import datetime, timedelta, timezone

utc = timezone.utc

make today timezone aware

today = datetime.now().replace(tzinfo=utc)

time = datetime.now().isoformat(timespec='seconds')

now = datetime.strptime(time[0:10], '%Y-%m-%d')

sh_time = today.strftime("%Y-%m-%dT%H:%M:%S.000Z")

expiry_days = timedelta(days=45)

def lambda_handler(event, context):

 response = check_for_orphans(event, context)

 return {

 'statusCode': 200,

 'body': response

 }

def check_for_orphans(event, context):

 if event['ResourceStatus'] == "DELETE_SKIPPED":

 response = log_finding_to_sh(event, context.invoked_function_arn)

 else:

 response = "Resource successfully deleted"

 return response

def log_finding_to_sh(event, context_arn):

 # setup for security hub

 account = (event['StackId'][33:45])

 sh_region = (event['StackId'][23:32])

 sh_hub_arn = "arn:aws:securityhub:{0}:{1}:hub/default".format(sh_region, account)

 sh_product_arn = "arn:aws:securityhub:{0}:{1}:product/{1}/default".format(sh_region,

account)

 # check if security hub is enabled, and if the hub arn exists

 sh_client = boto3.client('securityhub', region_name = sh_region)

 try:

 sh_enabled = sh_client.describe_hub(HubArn = sh_hub_arn)

 # the previous command throws an error indicating the hub doesn't exist or lambda

doesn't have rights to it so it will stop attempting to use it

 except Exception as error:

 sh_enabled = None

 print ('Default Security Hub product doesn\'t exist')

 response = 'Security Hub disabled'

 if sh_enabled:

 # set up a new findings list

Final Report

Oisin Chelmiah C00246745 36

 new_findings = []

 # add expiring certificate to the new findings list

 new_findings.append({

 "SchemaVersion": "2018-10-08",

 "Id": event['PhysicalResourceId'],

 "ProductArn": sh_product_arn,

 "GeneratorId": context_arn,

 "AwsAccountId": account,

 "Types": [

 "Software and Configuration Checks/AWS Config Analysis"

],

 "CreatedAt": sh_time,

 "UpdatedAt": sh_time,

 "Severity": {

 "Original": '89.0',

 "Label": 'HIGH'

 },

 "Title": 'Orphaned Resource',

 "Description": 'Resouce has been orphaned and is no longer in use',

 'Remediation': {

 'Recommendation': {

 'Text': 'The resource should be reviewed and deleted properly. If the

resource is a storage container, ensure the container is empty before attemting to

delete.',

 #'Url': "https://console.aws.amazon.com/acm/home?region=" + sh_region +

"#/?id=" + cert_id

 }

 },

 'Resources': [

 {

 'Id': event['PhysicalResourceId'],

 'Type': event['ResourceType'],

 'Partition': 'aws',

 'Region': sh_region

 }

],

 'Compliance': {'Status': 'WARNING'}

 })

 # push any new findings to security hub

 if new_findings:

 try:

 response = sh_client.batch_import_findings(Findings=new_findings)

 if response['FailedCount'] > 0:

 print("Failed to import {} findings".format(response['FailedCount']))

 except Exception as error:

 print("Error: ", error)

 raise

 return json.dumps(response)

Final Report

Oisin Chelmiah C00246745 37

function to setup the sh region

def get_sh_region(event_region):

 # security hub findings may need to go to a different region so set that here

 if os.environ.get('SECURITY_HUB_REGION') is None:

 sh_region_local = event_region

 else:

 sh_region_local = os.environ['SECURITY_HUB_REGION']

 return sh_region_local
Appendix 11 – writeOrphanedResourcesToSecurityHub.py

import json

import boto3

def lambda_handler(event, context):

 client = boto3.client('sns')

 snsArn = 'arn:aws:sns:us-east-1:916507989922:AWSCertAlert'

 message = "Dear User,\nThe AWS Cert Alert Dashboard has been updated.

Please check the dashboard using the following link:\nhttps://us-east-

1.quicksight.aws.amazon.com/sn/dashboards/a57c0d4a-b5e0-45ca-a07a-

8855dead939f"

 response = client.publish(

 TopicArn = snsArn,

 Message = message ,

 Subject='AWS Cert Alert Dashboard has been updated'

)

 return {

 'statusCode': 200,

 'body': response

 }
Appendix 12 – sendAlert.py

