
SECURITY TESTING OF
INFRASTRUCTURE
AS CODE

PRESENTED BY

SUPERVISOR

2. FUNCTIONAL SPECIFICATION

Table of Contents

Introduction...1

Application Purpose... 1

Target Groups...2

Architecture Diagram..3

Use Cases...4

Non-Functional FURPS..5

Functionality..5

Usability.. 5

Reliability.. 5

Performance..5

Supportability..6

Metrics Plans for the Project....................................6

Design & Description of Application..........................7

Similar Applications Open-Source or Commercial......7

CFRipper..7

SonarQube.. 8

Codacy.. 9

CloudSpolit.. 9

SE
CT

IO
N

 2

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 1

Introduction
The research report has examined Cloud Infrastructure and Cloud-based web services that are

used by many modern-day corporations. The primary focus is on Amazon Web Services and

the services that they provide to their clients. This chapter will report on web services that are

utilised in creating an infrastructure in Amazon and detail how some services can be

exploited. An explanation will detail the language used in this project and the reasons for

conducting this project around this specific language. Priority is to scan both YAML and JSON

files that can run these scripts and also run through an AWS script together with the headers

and topics needed to create an AWS script. By understanding how a script or template is

created the exploits and vulnerabilities can be comprehended and snags which have occurred

in previous scripts can be readily identified and resolved. This process will provide a better

understanding of how each script is formatted and how these scripts can be made more

secure.

This project aims to provide AWS clients with a tool that can inspect and provide feedback on

AWS CloudFormation scripts from a cyber security point of view. This tool could then be

implemented onto the AWS services and used alongside all AWS CloudFormation scripts by

placing the tool towards the start of the Continuous Delivery (CD) pipeline.

This project aims to create a static code analyser to enable the scanning of AWS Cloud

Formation scripts before execution. If successful, this will improve scripts and minimise the

potential exploits that can occur in YAML or JSON scripts. Java is the progamming language of

choice to code this tool and together with a graphic user interface will allow users to operate

this tool with ease, to provide useful security feedback to the AWS developer and help them

improve their scripts. The aim is that the tool will perform to specifications and be successful

in minimizing false positives that may occur when the script is scanned. Throughout the

development of the tool, it is hoped that new issues can be identified and more importantly

solutions found to resolve these issues.

Application Purpose
The purpose of this tool is to allow AWS CloudFormation scripts to be scanned and reviewed

before the script is launched. Whether it is a script to create a whole Virtual Infrastructure or

just a script that will create S3 buckets for EC2 instances. It should scan the scripts (YAML or

JSON), process the data, and then provide feedback to the AWS architecture or AWS

developers on improving their script from a security point of view. Potential problems that

the script will identify to the user include, are ports open, IPs are not secure or vpc set up

incorrectly etc. If the tool is successful in running, the tool will be integrated into the AWS CD

pipeline. Ultimately then all cloud/AWS architecture can use this tool and consider the

feedback analysis returned. Once the tool is adopted and implemented, constant revision

and tweaks will be made to ensure that any vulnerabilities arising can be resolved. Ideally, the

main functions aimed at identifying and minimising when running this tool are false positive

and false negative readings.

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 2

Target Groups
The target group of users of this static code analysis tool is predominately AWS Developers.

Since the tool is focused primarily on AWS CloudFormation scripts it would be targeted

towards Amazon software developers, allowing the testing of scripts before publishing pre-

built scripts. However, there is also scope for the tool to be utilised by other software

developers who use AWS as part of their own business or any cloud computing employee.

AWS architecture can also use this tool when developing their scripts, while another potential

customer for this tool could be cyber security analysts who have an interest in cloud

computing. This group can view the tool, categorize what is happening when the tool is

running and more importantly give feedback and advise how the tool can be improved upon.

While this tool is framed as a static code analyser for AWS CloudFormation scripts, other

cloud developers may replicate the concept but instead create a tool that would specifically

target e.g. windows PowerShell scripts etc.

Figure 1 - Beneficial users of this tool

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 3

Architecture Diagram
The diagram below visually presents the procedure of how scripts are created within a VPC

Amazon environment. The first step in the diagram, the IAM user is creating a YAML script

following which the script is pushed into the AWS code and released into the CD pipeline. In

the AWS pipeline the code then gets saved following which it is deployed within the pipeline.

When it gets to the AWS CodeBuild it builds the code and then sends the code to be saved

and stored in an S3 bucket which will be encrypted so the code cannot be accessed by any

unauthorized AWS user. When running the tool, the end user will be notified to encrypt the

S3 buckets so ensure that all AWS S3 buckets are unencrypted by default. Once the code is

stored in the S3 bucket the code can be deployed. Ideally, the tool is best implemented

during the AWS CodeCommit section within the AWS pipeline. Before the code gets deployed

and before the code can be built, every step should be taken to ensure that the code is a

vulnerability-free script and causes no major threat to the infrastructure the user is trying to

create.

Figure 2 - AWS Code Deployment

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 4

Use Cases

Figure 3 - Use Case

The ‘Use Case’ diagram highlights the process and graphically depicts the users possible

interactions with the tool. The basic steps, while minimal, are identified as:-

1. Download the tool.

2. Scan AWS scripts that are ready to be executed and check for potential vulnerabilities.

3. Provide feedback to the user.

This process will provide users with warnings over their code and more importantly identify

what steps are needed to secure the code. This practice should differentiate between critical

errors within the script versus warning errors that, while will not be harmful to the

infrastructure the user wishes to setup, are errors that can always be improved upon.

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 5

Non-Functional FURPS

Functionality

The functionality of this tool is designed to allow AWS architectures and developers to take

this tool and scan their own AWS CloudFormation scripts and be given feedback on how to

secure the script in a better manner, from a cyber security point of view and facilitate running

in a smoother environment. The tool should be available to those who used AWS Cloud

scripts for their environments, providing safety and reassurance to the developers working on

these scripts. Once the tool has been created and validated, it is hoped that the tool can be

implemented on every script that needs to be run and will prove to be a valuable asset,

providing additional security to all companies.

Usability

One of the primary efforts of this project is to ensure that the final tool easy to use and it is

recognised as a viable asset rather than an impediment for the end user. The goal is to

provide the AWS users with security feedback before launching their scripts and that the user

interface is easy to navigate through and visually appealing. If all these components are met,

then the project will be deemed successful.

Reliability

Consistency and reliability will be hallmarks of this tool, when hopefully adopted by every

AWS user, while creating AWS CloudFormation scripts. When the script is scanned, the

security feedback to the client should be clear and concise and not bombard the end user

with unnecessary comments or errors, i.e. false positives that are not beneficial to the user’s

script. Feedback is aimed not to overwhelm the AWS architecture or script developer but to

give assurance and reliability, so that the AWS architecture feel the tool is a vital necessity.

Important also that users can be assured that regular updates will ensure that the tool will

always remain bug-free and will scan as many scripts as the developer wishes with the same

speed and intensity after each use.

Performance

The performance of the tool is of prime importance when launching a new tool. The tool

needs to be beneficial, quick and easy to use for the developer. If the tool is an inconvenience

and slow when scanning the script, multiple issues will arise. The aim of this project is that

this tool should be fast to identify and provide the end-user with the corrections for scripts

and without detecting false positives. For profit focused, fast-paced working environments,

time is money and consequently tools and applications which can prove to be both

economical and beneficial will be selected for use.

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 6

Supportability

When it comes to supportability this tool will scan all AWS CloudFormation scripts and be

integrated into the AWS webpage so, all scripts created will be examined before the script is

published by the developer or published on the AWS webpage to the public. With the tool set

open-sourced, the opportunity to capture feedback from clients and/or AWS users will prove

positive to inform of any problems which may arise when trying to use this static code

analyzer. Through this, maintenance and upgrades can be implemented to ensure the tool is

updated, supported and working to its optimal capacity. The main goal of this product is to

make sure the clients are satisfied with how the tool runs and more importantly the benefits

which accrue to the clients. If the clients are happy with the tool then they will have

confidence and continue to use the tool on all types of scripts.

Metrics Plans for the Project
The main goal for this project is to get a static code analyser to scan AWS CloudFormation

scripts or templates and provide security feedback to the code AWS architecture or

Developers setting up the scripts. One of the primary functions of this tool is to minimise the

security flaws that may be present in an AWS CloudFormation script. If successful, it will

provide security feedback to the developers regarding the script; will recommend better

security practices to the developers working on the script and confirm when the script is safe

to launch. It will also notify the user of any potential misconfiguration or insecure patterns

that may be present within the script. An additional objective for this project is to integrate

this tool into the AWS system so that it can be used by all AWS architecture that uses

CloudFormation scripts & templates.

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 7

Design & Description of Application
The application will be developed in Java as mentioned above and the once the application is

launched the user will be prompted on what AWS service their file is (S3 for example). Once

selected they should be able select their file and then a scan will be done of the users script.

The script type must be JSON or Yaml file formatted and any other file extension will not be

deployed. The results should be returned to the user in a simple prompt box. The ease of use

is a key factor we hope to achieve in this project. The application will be uploaded to github

so that if any potential clients want to use this open-sourced tool they can download the files

to their own devices and run the tool.

Similar Applications Open-Source or Commercial

CFRipper

Research produced at the foundation stages of this project revealed that a similar tool has

already been created. Skyscanner Engineering, a Scottish metasearch engine and travel

agency have developed a tool known as CFRipper. This tool, developed using python

programming language, was designed to prevent vulnerabilities from getting into production

infrastructure through AWS CloudFormation scripts. With CFRipper, all code is available with

public access on GitHub as they wanted to make CFRipper an open-source tool. Although

other static code analysers exist, this is the closest product that offers an opportunity to scan

and check scripts in AWS CloudFormation.

Figure 4 - CFRipper Menu

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 8

Figure 5 – CFRipper Bucket Policy

The above screenshot demonstrates what the application looks like when the tool is run, i.e.

the tool is scanning a JSON script. A nice feature CFRipper offers is that it tells the AWS

architecture which aspects of the script are the problem. It tells the user which aspects of the

file failed and is a critical error in the script. It also tells the user of potential vulnerabilities,

that are not as serious as warnings, which are present in the script. This is a nice function and

one which will be ideally replicated in this project. Although while the CFRipper tool is

accessed through the command line, the hope of this project is to implement the tool with a

user interface, so it is easier to read and navigate.

SonarQube
SonarQube is an open-source static code analyzer that works to minimise security defects in

code and completes it in a quick manner. Its automated system was designed to detect bugs

and code errors that may have appeared in the code. Although the tool focused upon in this

project has been designed to work on AWS CloudFormation scripts, SonarQube is used to

examine code errors in multiple programming languages. The goal of SonarQube is to inspect

segments of codes which may have issues and vulnerabilities present. SonarQube also

monitors code quality which is a feature to ideally be replicated in this project.

Security Testing of Infrastructure as Code – Functional Specification
 Conor McKenna - C00248499

Page | 9

Figure 6 - SonarQube

Codacy
Codacy is a code quality checker that maintains and monitors code. This project will duplicate

similar functionality as the tool can be imbedded and work alongside AWS CloudFormation

scripts. By viewing and running the scripts on Codacy, an understanding can be gleaned on

how this tool can support AWS CloudFormation scripts.

CloudSpolit
CloudSpolit is an open-source AWS scanning tool. It checks against set predefined rules that

are best practice for AWS security. The tool identifies misconfigurations, insecure patterns

and more critical vulnerabilities. It analyses AWS services like EC2 instances, S3 buckets etc.

Its automatic security checks and integration of the tool into systems are a key benefit to

having and using this tool.

	Full Final Report for Submission.pdf
	Full Final Report - All Sections.pdf
	Full Final Report - All Sections.pdf
	Security Testing of Infrastructure as Code

	Acknowledgements

	Section 1 - Research Report (Referenced)

	Section 3 - Final Report
	Blank Page

