
Final Project Report

Maldive
Dynamic Malware Analysis Tool

Shane Doherty C00249279

Supervisor: Joseph Kehoe

South East Technological University

1

1 Table of Contents

Contents

1 Table of Contents 2

2 Introduction 3

3 Project Description 3
3.1 Process Hooking . 3

3.1.1 Description . 3
3.1.2 Limitations . 3
3.1.3 Challenges . 3
3.1.4 Screenshots . 4

3.2 Instruction View and Modification . 7
3.2.1 Description . 7
3.2.2 Limitations . 8
3.2.3 Challenges . 8
3.2.4 Screenshots . 9
3.2.5 Personal Thoughts . 10

3.3 Virtual Memory Space Scanner . 10
3.3.1 Description . 10
3.3.2 Limitations . 11
3.3.3 Challenges . 11
3.3.4 Screenshots . 12
3.3.5 Personal Thoughts . 14

4 General Issues 14
4.1 GUI . 15

5 Project Overview 15
5.1 Achieved . 15
5.2 Not Achieved . 15
5.3 What I Would Change . 16

6 Learning Outcomes 16

7 Conclusion 17

8 Acknowledgements 17

9 Plagiarism Declaration 18

2

2 Introduction

This report will document the general description of the project, along with specific features
that make it up. These features will include a description, and the challenges, limitations and
screenshots that are specific to each. Should it be applicable, my own personal thoughts on how
I feel about each will be discussed. In addition, the successes achieved within the project are
outlined, along with areas that I feel could have been improved upon.

3 Project Description

The aim of this project was to develop a malware analysis tool that would dynamically investigate
a program to determine if it contains malicious actions. The application takes in either a Portable
Executable (PE) file, which is the file format used with .exe files in the Windows Operating
System (OS), or a process that is already running on the OS. In the case of a PE file, the
process is launched and the analysis tool hooks into it in the same way as the running process.
Several methods are then utilised to analyse the targeted process, which are listed below, along
with challenges and how I personally feel about the implementation.

3.1 Process Hooking

3.1.1 Description

For the program to be able to monitor the activities of a process, it must first know details to
identify which process to look at. To achieve this, the program has the capability to launch a
process by itself and gather the relevant data when doing so. If the user wants to use a currently
running process, a view of each one is shown and can be selected from. In either case, the process
ID (PID) that the OS uses is also used in the project for the majority of the functionalities. As
multiple processes can be in use by a Windows program, this allows for individual ones to be
used and identified.

3.1.2 Limitations

While most programs have full functionality, this is not the case for some system-level processes.
They require higher elevation of permissions than can be given to a user program, so certain
actions are not possible. In terms of malware analysis, this is not a concern as system processes
are considered safe by default.

3.1.3 Challenges

There were no noteworthy challenges to overcome when identifying specific processes to be used
in the analysis tool, other than correctly formatting the running processes that are retrieved
from Windows. This was a quick feature to implement and development using this method of
process hooking was able to begin in a relatively fast amount of time.

3

3.1.4 Screenshots

Fig.1. Main window without a process attached

This window is the first screen shown without a process being selected. It presents an option to
choose a file, or alternatively a running process can be selected by using the Process checkbox.

4

Fig.2. Select file screen

Fig.3. File explorer window to choose a file

Should the user choose to open a file, the Choose a file screen is displayed. A file directory
may be entered into the File Location text field, or the Select File button can be used to open
the Windows Explorer where a file can be selected from the user’s file directory. Once a file is
chosen, the OK button sends the chosen file back to the main window to prepare a process to
be created from the executable.

5

Fig.3. Select Process

Fig.4. Select Process, search feature

Should the user instead choose to select a currently running process, a window is shown that
displays all processes that the OS is running. This window displays the Name that the OS can
see for the process, along with the unique Process ID (PID) that identifies the specific instance
of a process. The Memory that the process is currently allocated is also shown, displayed in
kilobytes. A search feature is implemented to filter the names of processes. When a process is
selected, the PID is sent back to the main window in preparation for the analysis tool to hook
into the process.

6

Fig.4. Main window with process attached

When either a file or process is chosen, the option to Launch becomes available. This finalises
the hooking stream, and details of the file/process are shown. The Directory displays the path of
the file, which is only displayed if a file is chosen in the select phase. The Version field outlines
whether the PE file is 32-bit or 64-bit, the data of which is extracted from the file itself. The
Name shows how the file is described within the file directory, and the PID is either the already
existing process identifier or the result of the newly created process if a file was chosen. This
finalises the hooking stream, and the main functionality of the program can be used.

3.2 Instruction View and Modification

3.2.1 Description

The first section in the analysis that began development was a view of the instructions that make
up a PE file. Executable files on the Windows OS use the x86 instruction set in .exe files, which
can contain malicious instructions. This can make analysis on the instructions a useful feature,
so the project implements a view of the entire instruction set that makes up an executable.

7

To read the instructions, the program processes the raw data of the file and extracts the bytes
that contain x86 instructions. As the instructions are stored as bytes, just outputting them
would yield very little information. To remedy this, the Capstone disassembly library is utilised,
which displays the instructions as the human readable opcodes, along with the address the code
is positioned in the file, and any additional operands. Once all of the instructions are processed,
they are sent to the Graphical User Interface (GUI) to be displayed to the user. For jump
instructions that are selected, the section of opcodes that are skipped are highlighted to show
where the jump is directed.

To add further utility to the x86 instructions, individual opcodes can be edited by the user to
change the functionality of the targeted executable. This allows the user to change individual
bytes of the file in a much easier way than editing the file itself. The updated bytes can then be
saved as a copy of the file, then run with the changed instructions.

3.2.2 Limitations

Some limitations are presented with modifying the instructions, as the OS may pick up on the
changed file and not allow the file to be run without making changes to its antivirus protections.
Another complication that arose is that some executables are actually self-extracting zips, where
the executable is a compressed collection of files which is unzipped when run. Attempting to
change the instruction set of these files will almost always cause the resulting file to be corrupted
and unable to run. It is possible to unzip the .exe file beforehand, however it is not guaranteed
to run as intended when executing it in this state.

3.2.3 Challenges

Before development into this feature began, there were many things to research to understand
how to extract the instructions from an executable file. The documentation for the PE format
is very extensive and hard to follow. As the format requires precise pointers and offset incre-
mentations, any misunderstandings with where a section of data is being accessed causes the
entire reading of the file to be misaligned and incorrectly labelled by the program. To move on
to other features, a library to access the instructions was temporarily implemented, however it
would only extract a small section of the instructions. Later on in development, the library was
removed and a custom implementation eventually succeeded in correctly extracting the features.

In relation to the instruction replacement, the aim was to have the user type in the human
readable opcode into a field in order to replace it. However, The capstone disassembler is a
one-way translation that takes bytes and returns the opcode. This meant that turning the
opcode back into a byte to be replaced in the file was not possible, and therefore the field for
the instructions must only use bytes. This still allows the functionality to be present, but is not
as user friendly as was intended.

8

3.2.4 Screenshots

Fig.5. x86 Instruction Window

9

Fig.6. Jump instruction highlighting

When the user chooses to view the x86 instructions of a process, this window is shown. It
displays the Address of the instruction as it appears in the .exe file, the Mnemonic that outlines
which instruction is being used, along with any additional Opcodes that the instruction uses.

The instruction set includes jump instructions that can skip ahead to a different instruction or
move backwards to a previous instruction. These can serve as loops or if statements and allow
a change of sequence of execution. If any of these jump instructions are selected, the resulting
jump is highlighted to where the sequence will continue.

3.2.5 Personal Thoughts

In total, the implementation of viewing and modifying the x86 instruction set turned out as I
envisioned, showing the user something similar to what the computer sees when it is executing
the program. Along with malware analysis, it is useful for those who are interested in low-
level machine instructions, being a great tool to tinker with and use to change around some
instructions without modifying the original file. If I had more time, I would have liked to look
into translating the instructions into a pseudo C++ style format, with if and while statements
instead of jump instructions, etc.

3.3 Virtual Memory Space Scanner

3.3.1 Description

One of the more challenging features to implement was access to a targeted process’ virtual
memory space. In Windows, each process is given a virtual space to store any memory that a

10

process may need, instead of requiring that all memory be stored in physical memory at all times.
This allows the OS to swap in and out memory that needs to be run at any given moment, and
also allows two or more processes to use the same address to call a piece of data. Knowing what
a process is storing as data can be very useful in analysing it for malicious actions, seeing if it is
storing data about the user that it should not be. Therefore, the project incorporates a feature
that allows the user to view sections of the memory space that contains readable data, and a
search feature to look through the space. Searching provides a basic wildcard implementation
to allow for more exact phrasing for what to search.

3.3.2 Limitations

The virtual memory space of a program can be extremely large in some cases, which brings
up many performance issues when loading certain processes. As the virtual memory is much
larger than what it holds in physical memory in most cases, attempting to load these types of
files resulted in a slowdown of the program, and would sometimes cause a freeze of the entire
program for multiple seconds. Multithreading was utilised to attempt to remedy this, splitting
the intensive task from the GUI’s functionality. This was mostly a success, however it would still
cause a less extreme slowdown when moving the large section of data to the GUI. This made it
impossible to display the entire memory space in the GUI, instead having to show only a certain
section at one time.

3.3.3 Challenges

Implementing a view into the virtual memory space was by far the most difficult and time
consuming part of the project. The memory is not set up in a way to be read in its entirety,
instead it is split into pages that are to be read individually. In order to read these pages,
they must all be individually accessed with low level function calls to the windows.h API in
C++, then sent back to the Java GUI through the Java Native Interface. For each function
call, protection values had to be modified, the size of the page accurately being added as an
input, then the address values within the page being read to a buffer, along with other smaller
considerations. In many cases, the script would simply crash, and in others would output null
or default byte values. It took a considerable amount of time to get it in a working state, then
additional time to deal with the performance issues relating to the size of the outputted data.
This issue does not apply to the search field, as Swing Widget Tool (SWT), the interface used
to design the GUI, has a virtual table feature to allow for large amounts of data that can be
formatted in a table to be added with little performance impact.

11

3.3.4 Screenshots

Fig.7. Virtual Memory View

This is the view of the virtual memory screen. The field on the left contains the unfiltered
ASCII representation of the bytes contained within the memory. In the majority of cases, this
will be completely useless sections of uninitialised data that the process is not using. This is the
expected behaviour of the program, as every page that is available is read, including the allocated
space that is not in use. The functionality comes from the readable text that is extracted from
the memory space, shown on the right table. This is the result of processing the virtual memory
to attempt to find values, strings, and any other section of data ready to be used by the targeted
program. The amount of information that can be gathered with this feature is very extensive,
as the table usually contains thousands of values. The length value shows the entire size of the
virtual memory space, in bytes, that is contained within the raw memory space.

12

Fig.8. Selecting a section of data

The text table allows for selecting individual portions of the memory, which displays the sur-
rounding sections of raw data. This usually results in the left section being much more readable,
as it is then accessing a used page of memory. The specific section that was selected by the user
is highlighted in this view.

13

Fig.9. Search feature with wildcard

The large amount of text data can be filtered through with the search feature. The user can
search by either using exact phrasing, where if the text entered is a subsection of a particular
table value, it is shown in the search. In the above example, a wildcard is used, where the text
is only shown if it begins with http. Common patterns that yield the most information can be
found with this feature, should users learn what to look for.

3.3.5 Personal Thoughts

The section of code that I produced from working through this problem is perhaps the most
proud of a code piece I have ever been. This challenge seemed largely unsolved from what I
could find, therefore very little external help was utilised when dealing with it. Ideally, the entire
memory space would be accessible to the user in the GUI, however the search feature still makes
it a highly usable feature in the program.

4 General Issues

There were several areas that provided difficulty during the course of development that were not
specific to any one section. These issues remained relevant along with others described above

14

4.1 GUI

The interface chosen to develop the Java GUI was Swing Widget Tool (SWT) for the Eclipse
development environment. Overall, it helped extensively with creating the GUI, allowing for
a real-time view of how individual components were placed in the window and dragging the
positions around within this view proved highly useful. However, some issues while using SWT
made it so that it was not as efficient as I would have liked.

The greatest cause of inconvenience was how SWT managed the different layouts that can be
applied to a program. These layouts are essential for allowing the window to be resized, moving
components accordingly as the window changes in size. The two layouts that were used in the
project were the GridLayout and FormLayout. Attempting to reposition components of the GUi
while they were in these layouts would, in the majority of cases, cause every other component to
change in size and position. This increased the time required to modify the GUI dramatically
as components would have to be repositioned every time a change was made. In rare cases with
the form layout, repositioning a widget would cause Eclipse to completely freeze and increase
CPU usage to the point where my entire device would slow down until it was forcibly stopped.

Even when the components were laid out correctly, it proved very difficult to have them resize
as expected, with usually only one component actually changing size with the window. There
was little I could do to change this behaviour, other than arranging the GUI in such a way that
the most important aspect of a window was the one to change size.

These complications increased the time required to develop the GUI in areas that it should not
have, and without mentioning the actual time to design the GUI. While it was still significantly
faster to use this feature than manually writing all of the code for the GUI, these issues served
as minor annoyances throughout the development cycle of the project.

5 Project Overview

5.1 Achieved

The project contains several features that successfully go towards the analysis of programs
for malicious actions. It provides methods to give the user a deep dive into the workings of a
targeted program by showing them values stored within its memory, instructions that make up its
executable compilation, and details specific to the application. These are highly technical aspects
that are very difficult to manually access without the help of the analysis tool’s capabilities, and
they are shown in a way that one with basic technical skills can comprehend and tinker with.

Overall, the main goals set out at the beginning of the project were successfully achieved, and
a solid foundation to build on what has been done is laid out, should it be revisited in the
future. This is due to how the functionality was developed, consisting of several sets of tools
that make up the larger scheme of the project. Splitting it in this way allows for existing tools
to be reviewed, modified, and expanded upon while new functionality can be easily applied.
Maintenance and supportability were constantly in focus during the development cycle, which
conforms to the agile methodology of development.

5.2 Not Achieved

The biggest issue that came with developing low-level functionality was the time required to be
invested into each section. There was a constant cycle of research, trial and error, and failed

15

implementations before a stable solution could be found. Along with the additional areas to allot
time, such as the GUI, performance tuning, documentation, and external factors, the feature
set that is supplied in the final release is not as extensive as I would have liked. Many areas
that were considered for development had to be scrapped because of this, such as automatic
logging of progress to resume analysis after the program had shut down. Given more time, the
existing tools could be heavily expanded upon and made even more intuitive, while supporting
features would be added to streamline the operability between the tools for a more seamless user
experience.

Before the development phase of the project began, the initial plan was to have the program
detect the type of malware that is prevalent in a targeted process, whether that be scareware,
ransomware, bloatware, etc. This soon turned out to be entirely infeasible within the devel-
opment timeframe, most likely requiring an extensive use of machine learning and signature
detection. Access to relevant malware datasets that would aid in the machine learning process
would also be a challenge, with the most extensive ones being privatised by malware protection
companies to keep their competition from accessing them. This is specifically mentioned as this
functionality was a considerable portion of the project proposal, with the features developed
intended to achieve the detection goal. This does not subtract from the ultimate aim of this
project, which was to create a tool that dynamically analyses a piece of software for malicious
actions. The analysis is still possible, just not as efficient as what could entirely be achieved.

5.3 What I Would Change

If I was to restart the project from scratch, I would set the scope of what could be achieved to
a more reasonable level. The expectations of what I could produce in the given time applied
unneeded pressure from an early stage, and time was spent in these areas that ultimately led to
very little progress towards the final product. Setting goals that were more in line with what I
could reasonably produce would allow me to expand more on these areas instead of attempting to
do too much of everything at once. This comes down to proper planning of a large scale project,
in which I feel that I have gained invaluable experience during the course of development.

6 Learning Outcomes

When I was considering which project to undertake near the start of the year, I had a con-
versation with Richard Butler, a lecturer in South East Technological University. I mentioned
that I was interested in a project that involved working with technical areas where solutions
involved tinkering with low-level data to produce a result. He had recommended working on a
malware analysis tool, as this suited what I described perfectly. As much of this project came
from researching, among other areas, how an operating system handles processes, memory swap-
ping, and file execution, the depth of understanding with low-level OS management that I have
gained is significant. Some of these areas were touched upon during the four years of college
that I attended, however this was mostly on a theory level. Being able to properly interact
with Windows function calls and handle files down to the byte level gave me a more intricate
understanding than a book ever could.

Along with the content of the program, working on a project for such an extended period of time
provided me with experience that is more generally suited towards the working environment that
is very soon to follow the conclusion of my project. Using an agile methodology to build a project
from scratch showed what the type of work that will be expected of me will be when I leave
college, knowing how to submit constant iterations of documents and prototypes of software
from what I applied during the past college year. These skills will stick with me well into the

16

foreseeable future, and by then I aim to have refined them many times over.

7 Conclusion

Overall, I am satisfied with the amount achieved during the project. In general, it was an
enjoyable experience working through the problems that came with development, and a lot was
learnt by doing so. While the problems encountered meant that the final product was not as fully
feature complete as I would have hoped, the work that went into the areas that were developed
means that I will look back on this project in a positive light.

8 Acknowledgements

I would like to extend my thanks to my supervisor, Dr. Joseph Kehoe, for guiding me through
this project during the past few months. The weekly meetings with him provided me with valu-
able information and directions to take the development of the program. Without his guidance,
there would have been many occasions where I would have been completely unsure on what
to work on, or areas to research. The materials and guidance provided helped in many ways
towards the final submission of the project. Thank you, Joseph!

17

9 Plagiarism Declaration

Declaration

I declare that all material in this submission e.g. thesis/essay/project/assignment is entirely
my/our own work except where duly acknowledged.
I have cited the sources of all quotations, paraphrases, summaries of information, tables,
diagrams or other material; including software and other electronic media in which
intellectual property rights may reside.
I have provided a complete bibliography of all works and sources used in the preparation of this
submission.
I understand that failure to comply with the Institute’s regulations governing plagiarism
constitutes a serious offence.

Student Name: Shane Doherty

Student Number: C00249279

Signature:

18

