
1

(Vecteezy, n.d.)

Herm0ni Chess Bot

Design Document 2024-2025

Student Name: Seán Rourke

Student Number: C00251168

Supervisor: Joseph Kehoe

2

Contents
1. Introduction .. 3

1.1. Document Purpose .. 3

2. System Architecture ... 3

2.1. Component Architecture .. 3

2.2. Chess Engine .. 4

3. Sequence Diagram .. 5

4. Technologies .. 5

4.1. C++ ... 5

4.2. Lichess Bot API ... 5

4.3. Hosting Platform .. 6

5. Data Structures .. 6

5.1. Bitboards ... 6

5.2. Minimax Tree ... 7

6. Algorithms .. 7

6.1. Heuristic Algorithm ... 7

6.1.1. Heuristic Function: ... 7

6.2. Minimax with Alpha-Beta Pruning .. 11

References ... 13

3

1. Introduction

Herm0ni is an artificial intelligence (AI) chess bot aimed at being played by players for

practice or fun, and other chess bots to determine comparative strength. The bot is designed

to evaluate chess positions and determine the next move to make without the need for

human input.

1.1. Document Purpose

The purpose of this document is to detail the design and structure of the Herm0ni bot and its

implementation on lichess.org. Interactions between different parts of the system will be

illustrated using sequence diagrams. This document will contain details of the various

technologies used to create the bot and the reasoning behind using those technologies. The

data structures used by the bot will be explained and visualised. This document will also

contain details of the various complex algorithms that the bot uses to play chess.

2. System Architecture

2.1. Component Architecture

4

2.2. Chess Engine

The engine decides on its next move through one of three methods.

It can utilise an opening book that contains a sequence of moves it must follow for the initial

moves of the game.

It can use an endgame tablebase once there are less than eight pieces left on the board.

The tablebase contains the best move in every scenario for any combination of seven pieces

or less.

If neither the opening book nor endgame tablebase can be used, the engine will calculate its

next move using its own algorithms.

5

3. Sequence Diagram

4. Technologies

4.1. C++

The code for the bot itself will be written in C++. The high speed of C++ is beneficial for

efficient computation of complex algorithms. This is especially crucial in short chess games,

such as blitz or bullet games. Being able to perform these algorithms quickly ensures that

the skill level of the bot doesn’t take a hit when the time it it given to make each move is

reduced.

4.2. Lichess Bot API

The lichess bot API allows the bot to interact with the lichess.org website. The API allows a

bot account on lichess.org to be controlled by the engine. It can send commands to the

engine and process responses. The API send messages to the engine in JSON. Information

about moves made by the player is presented in universal chess interface (UCI).

6

4.3. Lichess Bot Client

The lichess bot client is a bridge between the lichess bot API and the chess engine. The

client allows the engine to interact with the website, granting the ability for the bot to play

games against other bots or real players on lichess.org.

Having the bot implemented on lichess.org means that time and effort does not need to be

spent developing a graphical user interface (GUI) for the games to be played. This means

more time can be spent optimising the engine’s performance for improved chess ability.

4.4. Hosting Platform

The hosting platform for the bot is currently undecided. Google Cloud and Hetzner are

currently being considered as options

5. Data Structures

5.1. Bitboards

The position of a game is stores using bitboards. These are implemented using 64-bit

integers, with each piece for each colour having their own bitboard. A 64-bit integer is used

as each bit can represent a square of the chess board. A 1 bit in the integer represents the

presence of a piece on that square. For example, at the beginning of the game, the white

pawns take up eight squares along the second rank. For example, using a 64-bit integer, the

white pawns are initialised as seen below.

Bitboard whitePawns = 0x000000000000FF00;

Separate bitboards are stores for each piece of each colour, along with a bitboard for all

white pieces, all black pieces, and all pieces. This allows for easy checking of is a square

occupied and is a piece able to be captured.

Operations can be performed on these bitboards to easily update positions. For example,

the bitboard containing all pieces is created by combining the bitboards for the white and

black pieces.

allPieces = whitePieces | blackPieces;

7

5.2. Minimax Tree

When performing through the minimax algorithm, each position after a potential move

represents a node on the tree. The root node represents the current game state and leaf

nodes are made up of positions reached after looking ahead three moves, or when a worse

position is discovered, and the branch is pruned.

6. Algorithms

6.1. Heuristic Algorithm

The heuristic algorithm is used to evaluate a position, determining who is in a more

advantageous position, white or black, or whether the position is equal. An advantage for

white will be represented with a positive number, an advantage for black will be represented

with a negative number, an evaluation of 0 means that the position is equal. This algorithm is

based on many factors. All evaluation functions will be run once, with values being added to

the evaluation for the white pieces and subtracted from the evaluation for the black pieces.

This is more efficient than running each function separately for the white and black pieces

and then subtracting the black evaluation from the white.

6.1.1. Heuristic Function:

function EvaluatePosition()

 score = 0

 for each piece in board

 if white.owner == "white"

 score += EvaluatePiece(piece)

 else if piece.owner == "black"

 score -= EvaluatePiece(piece)

 end if

 end for

 return score

end function

function EvaluatePiece(piece)

8

 score = 0

 score += MaterialValue(piece)

 score += PieceActivity(piece)

 if piece.type == "king"

 score += KingSafety(piece)

 else if piece.type == "pawn"

 score += PawnStructure(piece)

 end if

 score += ControlOfCenter(piece)

 score += Development(piece)

 score += SpaceContribution(piece)

 score += Coordination(piece)

 score += Mobility(piece)

 return score

end function

The most basic evaluation factor material count. Each piece is given a value:

 Pawn: 1

 Knight: 3

 Bishop: 3

 Rook: 5

 Queen: 9

 King: 0 (not directly scored)

Material Count Funtion

function MaterialBalance()

 score = 0

 for each piece in board

 if piece.type == "pawn"

 value = 1

 else if piece.type == "knight" or piece.type == "bishop"

 value = 3

 else if piece.type == "rook"

9

 value = 5

 else if piece.type == "queen"

 value = 9

 else

 value = 0

 if piece.owner == "white"

 score += value

 else if piece.owner == "black"

 score -= value

 end if

 end for

 return score

end function

Piece activity is another factor to be considered when evaluating a position. For example, a

bishop in the middle of the board can see more squares than at the edge of the board and is

considered more active.

Piece Activity Function

function PieceActivity()

 score = 0

 for each piece in board

 legalMoves = generateLegalMoves(piece)

 activity = length(legalMoves) * activityWeight(piece)

 if piece.owner = "white"

 score += activity

 else if piece.owner = "black"

 score -= activity

 end if

 end for

 return score

10

end function

A major factor in the evaluation of a position is king safety.

King Safety Function

funtion KingSafety()

 score = 0

 for each king in board

 safety = 0

 if isFileOpen(king.position) or isDiagonalOpen(king.position)

 score -= 2

 end if

 for each square in AdjacentSquares(king.position)

 if board[square] != "pawn" or board[square]. owner != king.owner

 safety -= 1

 end if

 end for

 if king.owner = "white"

 score += safety

 else if king.owner = "black"

 score -= safety

 end if

 end for

 return score

end function

Pawn structure is also an important factor in evaluating a position. Isolated and doubled

pawns are considered a negative, whereas passed pawns are considered a positive.

Pawn Structure Function

function PawnStructure

11

 score = 0

 for each pawn in board

 structure = 0

 if isIsolated(pawn)

 structure -= 1

 if isDoubled(pawn)

 structure -= 1

 if isPassed(pawn)

 structure += 2

 end if

 if pawn.owner = "white"

 score += structure

 else if pawn.owner = "black"

 score -= structure

 end if

 end for

 return score

end function

6.2. Minimax with Alpha-Beta Pruning

The minimax algorithm is used for the calculation of the next move. From a position, all

possible moves are considered, then the possible responses to this move are considered.

The position after these moves is evaluated to determine the best move to make.

Minimax Function

function Minimax(position, depth, alpha, beta, maximisingPlayer)

 if depth == 0 or gameOver(position)

 return evaluate(position)

 end if

 if maximisingPlayer

12

 maxEval = -infinity

 for move in generateLegalMoves(position)

 makeMove(position, move)

 eval = minimax(position, depth -1, alpha, beta, false)

 undoMove(position, move)

 maxEval = max(alpha, eval)

 alpha = max(alpha, eval)

 if beta <= alpha

 break

 end if

 end for

 return maxEval

 else

 minEval = infinity

 for move in generateLegalMoves(position)

 makeMove(position, move)

 eval = minimax(position, depth, alpha, beta, true)

 undoMove(position, move)

 minEval = min(minEval, eval)

 beta = min(beta, eval)

 if beta <= alpha

 break

 end if

 end for

 return minEval

 end if

end function

function BestMove

 bestEval = -infinity

 bestMove = null

 alpha = -infinity

13

 beta = infinity

 for move in generateLegalMoves(position)

 moveMove(position, move)

 eval = minimax(position, depth -1, alpha, beta, false)

 undo_move(position, move)

 if eval > bestEval

 bestEval = eval

 bestMove = move

 end is

 end for

 return bestMove

end function

References
Vecteezy, n.d. Vecteezy. [Online]

Available at: https://www.vecteezy.com/free-vector/chess-silhouette

[Accessed 26 November 2024].

	1. Introduction
	1.1. Document Purpose

	2. System Architecture
	2.1. Component Architecture
	2.2. Chess Engine

	3. Sequence Diagram
	4. Technologies
	4.1. C++
	4.2. Lichess Bot API
	4.3. Lichess Bot Client
	4.4. Hosting Platform

	5. Data Structures
	5.1. Bitboards
	5.2. Minimax Tree

	6. Algorithms
	6.1. Heuristic Algorithm
	6.1.1. Heuristic Function:

	6.2. Minimax with Alpha-Beta Pruning

	References

