
 
 

 

CMD Obfuscation Detection Tool 
 

Functional Specification 
 

 

Student: Melanie Dudas 

Student Number: C00253245 

Supervisor: Dr Hisain Elshaafi 

  



2 
 

Table of Contents 
 

 

Table of Figures ....................................................................................................................................... 3 

Introduction ............................................................................................................................................ 4 

Project Scope ...................................................................................................................................... 4 

Assumptions and Constraints ............................................................................................................. 4 

System Architecture ................................................................................................................................ 5 

Use Case .................................................................................................................................................. 6 

Use Case scenarios .............................................................................................................................. 7 

Input commands manually ............................................................................................................. 7 

Detect obfuscation automatically ................................................................................................... 7 

Alert authorised user ...................................................................................................................... 8 

Requirements .......................................................................................................................................... 9 

Functionality ....................................................................................................................................... 9 

Usability .............................................................................................................................................. 9 

Reliability ............................................................................................................................................. 9 

Performance ....................................................................................................................................... 9 

Supportability ...................................................................................................................................... 9 

Metrics .................................................................................................................................................. 10 

Project Plan ........................................................................................................................................... 11 

Precedent .............................................................................................................................................. 13 

Related Work ........................................................................................................................................ 13 

References ............................................................................................................................................ 14 

 
  



3 
 

Table of Figures 
 

Figure 1 System Architecture diagram ................................................................................................... 5 

Figure 2 CMD obfuscation detection tool - Context diagram ................................................................. 6 

Figure 3 CMD obfuscation detection tool - Use Case diagram ............................................................... 6 

Figure 4 Project plan - Gantt Chart ....................................................................................................... 12 

 

  



4 
 

Introduction 
 

As stated in the accompanying research document, relying on traditional-style detections does not 

provide the ability to detect command-line obfuscation. For that reason, this project aims to develop 

a machine-learning tool for command-line obfuscation. 

The purpose of this document is to provide a functional specification for the CMD Obfuscation 

Detection tool. It will include detailed information about the tool's design, capabilities, and how 

users can interact with it. 

 

Project Scope 
  

To produce a standalone CMD Obfuscation Detection tool that will accurately classify commands so 

that an authorised person can review the activity and respond accordingly if obfuscation is detected.  

The tool must be able to accept user input, classify that input and output the classification results 

back to the user. The tool should also be able to run in the background, automatically fetch 

commands executed on endpoints and alert the authorised person in case of obfuscation. 

 

Assumptions and Constraints 
 

Project assumptions are things believed to be true while the project constraints are limitations 

imposed on the project. As the project is being developed, assumptions and constraints may be re-

analysed and refined. 

The primary assumption regarding this project is that Sysmon service is installed on all systems 

where obfuscation wants to be detected. Another assumption is that the tool will run on a system 

which is never powered off so that the tool can run constantly.  

The main constraint is that the project must be finalised by April 2023. Because of the time 

constraint, the primary goal of this project will be to get the tool to work with manual input. If there 

is enough time, the goal would be to get the tool to run in the background and automatically fetch 

each executed command. 

  



5 
 

System Architecture 
 

 

Figure 1 System Architecture diagram 

 

Figure 1 presents the system architecture in which the tool can automatically fetch executed 

commands. All the PCs which need monitoring for CMD obfuscation must be running Sysmon 

service. Sysmon is then able to collect all executed commands and send each one to the server. The 

server keeps track of all commands and the information about the device where they were 

executed. The CMD Obfuscation detection tool runs on that same server. If obfuscation is detected, 

the server sends an alert to an authorised user containing information about the command and 

device details.     

  



6 
 

Use Case 

 

A context diagram is a high-level diagram that shows how external entities interact with a system. It 

is frequently drawn as a single process that summarises the entire system. 

 

Figure 2 CMD obfuscation detection tool - Context diagram 

As can be seen in Figure 1, CMD is the external entity from where the data flow starts. Once a 

command is run in CMD, it goes through the CMD Obfuscation Detection tool to be examined for 

obfuscation. If obfuscation is detected, the tool alerts an authorised person or people. The alert 

could be sent to SIEM software or by email. 

 

 

Figure 3 CMD obfuscation detection tool - Use Case diagram 

 



7 
 

Figure 2 presents a Use Case diagram which shows more information than the Context diagram. Two 

types of actors are displayed, an authorised user, e.g. security employee, and a user, which can be a 

malicious actor or non-security employee. There are only three features of the tool, manual input of 

commands for detection, automatic detection from CMD and alert function.  

 

Use Case scenarios 
 

In this section, the features of the app will be described in more detail. 

 

Input commands manually 
 

Name: Input commands manually 

Actors: Authorised user 

Description: An authorised user wants to input a command manually into the tool to see the 

classification output. The user chooses the option for manual input, inputs the command, and the 

result is outputted back to the user. 

Main success scenario: 

1. The user is able to select the option for manual input. 

2. The tool accepts the input for classification. 

3. The tool outputs the results to the user immediately. 

 

Detect obfuscation automatically 
 

Name: Detect obfuscation automatically 

Actors: Command prompt / Authorised user 

Description: A user or an authorised user is running commands in CMD. Each of the commands is 

sent to the tool for classification.  

Main success scenario: 

1. The tool is able to get every command that was executed in CMD. 

2. The tool is able to classify each of the commands as they come.  

  



8 
 

Alert authorised user 
 

Name: Alert authorised user 

Actors: Authorised user 

Description: Obfuscation is detected in one of the commands run in CMD. The tool sends an alert to 

the authorised user. 

Main success scenario:  

1. The tool is able to send an alert via email or to SIEM software. 

2.  The alert has detailed information about the command in question and the device from 

which the command originated.  

  



9 
 

Requirements 
 

Functionality 
 

# Function Description Criticality Dependency 

1 Manual input 
Accept manually 

inserted commands 
High  

2 Fetch command 
Automatically fetch 

commands 
Medium  

3 Classify Classify commands High #1 / #2 

4 Output prediction 
Output classification 

result directly to user 
High #1, #3 

5 Alert 

Send alert if 

obfuscation is 

detected 

Medium #2, #3 

 

Usability 
Usability refers to the users of the program and their interaction with it. It should be easy for users 

to input the commands if they wish to do so manually, and the output should be easy to understand. 

It should also be easy for users to find and select the option for manual input. 

 

Reliability 
The tool should have at least 95% reliability in relation to crashes. It must not create vulnerabilities 

in the system. Load testing will be performed to see how the tool would behave in real-world 

conditions.  

 

Performance 
To function, the tool must use as few resources as possible. The tool must be fast enough to be able 

to examine each of the commands as soon as they are executed. It should take around 10 seconds 

for the tool to start up. 

 

Supportability 
The tool must be able to work on all modern Windows operating systems. The installation of the tool 

must be an easy process with little user involvement necessary. The tool must be able to function 

without internet connection. 

  



10 
 

Metrics 
 

Metrics in this project refer to the methods used to evaluate the tool's effectiveness. The following 

are the key metrics that should be used to assess the project's success: 

 

✓ The tool must be able to run on Windows Operating Systems and should be compatible 

with Windows Server 

✓ The tool is easy to setup  

✓ The tool is easy to use manually  

✓ Commands can be inputted manually into the tool 

✓ The tool can use the machine learning algorithm to classify the commands accurately 

✓ Accuracy results of this tool are the same or higher than those of the existing tools 

✓ The tool can produce classification output 

✓ The tool must display output in a comprehensible manner 

✓ The tool can automatically get executed commands via Sysmon 

✓ The tool can send obfuscation alerts containing information about the command run 

and device details 

✓ All non-functional requirements must be achieved  



11 
 

Project Plan 
 

Plan Due Date Deliverable 

Submit Research 

Document 
25/11/2022 

Finish Research document draft and submit to 

Blackboard. 

Submit Functional 

Specification Document 
16/12/2022 

Finish Functional Specification document 

draft and submit to Blackboard. 

Test different ML 

algorithms 
31/12/2022 

Test three different ML algorithms to find the 

most accurate one. 

Accept input Function 10/01/2022 
Give the tool functionality of accepting user 

input. 

Classify Function 17/01/2023 
Give the tool functionality of classifying user 

input. 

Output Function 24/01/2023 
Give the tool functionality of classifying user 

input. 

Fetch command Function 14/02/2023 
Create a way for the tool to be able to fetch 

every executed command. 

Alert Function 24/02/2023 
Give the tool ability to alert authorised user 

when obfuscation is detected. 

Reserved 10/03/2023 
Finish any outstanding work and allow time 

for final changes. 

Testing 10/04/2023 
Test the tool’s performance, test for any 

security issues, load testing. 

Project Document 21/04/2023 
Finish Project document and submit to 

Blackboard. 



12 
 

 

 

Figure 4 Project plan - Gantt Chart 

  

18/10/2022 17/11/2022 17/12/2022 16/01/2023 15/02/2023 17/03/2023 16/04/2023

Research Document

Functional Specification

Test different ML algorithms

Accept input Function

Classify Function

Output Function

Fetch command Function

Alert Function

Reserved

Testing

Project Document

Project Plan



13 
 

Precedent  
 

My work placement served as a major precedent for this project. During my role as a Security 

Operations intern, the team tested the company's detection ability. It was noticed that neither the 

company nor the external parties were able to detect an otherwise highly detectable activity if the 

commands were obfuscated.  

One of the most critical functions performed by Security Operations analysts is threat detection and 

response. When monitoring tools issue alerts, the analysts investigate them and, in case of a true 

positive, they must respond quickly by, for example, shutting down or isolating an endpoint. (Trellix, 

n.d.) Suppose command line obfuscation makes all company tools incapable of detecting suspicious 

activity. In that case, it means the analysts are also unaware that the activity has occurred, thus 

preventing them from doing their job. 

 

Related Work 
 

As already stated in the Research Document, two machine-learning tools have been developed for 

detecting Command Line obfuscation. Only the tool developed by Adobe is open sourced and can be 

evaluated or benchmarked against this project’s tool once it is developed.  

There are three main disadvantages of Adobe’s tool. Firstly, it has been built to detect only the 

obfuscation techniques presented in the DOSfuscation paper (Bohannon, 2018) researched by Daniel 

Bohannon. (Tang, 2021) Although Bohannon extensively researched Command Line obfuscation, 

researcher Weitze Beukema furthered the research by investigating synonymous command lines, 

which are capable of staying obfuscated even in the recorders used by detection software. 

(Beukema, n.d.) That means Adobe’s solution is capable of detecting many obfuscation techniques; 

however, it is much less capable of detecting the primary concern when it comes to Command Line 

obfuscation. 

Secondly, Adobe tested only the Convolutional Neural Network algorithm and implemented it in the 

tool. Convolutional Neural Network, or CNN, is primarily used for analysing visual imagery, but it has 

also shown promising results in natural language processing. However, regarding obfuscation 

classification, CNN has produced less accurate results in both PowerShell and CMD obfuscation.  

Thirdly, Adobe’s tool allows only manual input. In order to use Adobe’s tool for obfuscation 

classification, each of the commands needs to be inputted manually into it, and the classification 

results can be read in the tool’s output. Considering a company can have hundreds or even 

thousands of commands run daily, using Adobe’s solution could be impossible. That is why this 

project will aim to make a tool able to fetch the commands as they are executed and classify them 

automatically.   



14 
 

References 
 

Beukema, W. (n.d.). Windows Command-Line Obfuscation. Retrieved October 23, 2022, from 

WietzeBeukema: https://www.wietzebeukema.nl/blog/windows-command-line-obfuscation 

Bohannon, D. (2018, March 22). DOSfuscation: Exploring the Depths of Cmd.exe Obfuscation and 

Detection Techniques. Retrieved November 06, 2022, from Mandiant: 

https://www.mandiant.com/resources/blog/dosfuscation-exploring-obfuscation-and-

detection-techniques 

Tang, W. (2021, August 24). Using Deep Learning to Better Detect Command Obfuscation. Retrieved 

November 06, 2022, from Adobe Tech Blog: Using Deep Learning to Better Detect Command 

Obfuscation 

Trellix. (n.d.). What Is a Security Operations Center (SOC)? Retrieved December 11, 2022, from 

Trellix: https://www.trellix.com/en-us/security-awareness/operations/what-is-soc.html 

 

 


