

CMD Obfuscation Detection Tool

Final Report

Student: Melanie Dudas

Student Number: C00253245

Supervisor: Dr Hisain Elshaafi

2

Abstract

This document outlines the final product of the 4th year Cybercrime and IT Security project

developed to improve an organisation’s threat detection capabilities. The product aims to detect

potential threats early to limit damage and prevent further malicious activity.

The document includes details on the product development process, key features, and

benchmarking of three machine learning algorithms with the highest accuracy.

The product runs entirely in CMD and is designed for use by Security Operations. Its primary function

is to identify the execution of obfuscated commands in CMD, providing an organisation with visibility

into previously undetectable indicators of compromise.

3

Table of Contents

Abstract ... 2

Table of Contents .. 3

Table of Figures ... 4

1. Introduction .. 5

2. Final Product ... 6

2.1. Features .. 6

2.2. Future Work .. 9

3. Machine Learning Component .. 10

3.1. Dataset .. 10

3.2. Text Pre-processing ... 10

3.3. Benchmarking Algorithms ... 11

3.3.1. Accuracy .. 11

3.3.2. Speed and resource usage .. 12

4. Testing ... 13

5. Learning Outcomes ... 14

5.1. Technical ... 14

5.2. Personal .. 14

6. Conclusion and Project Review ... 15

7. Acknowledgements ... 16

4

Table of Figures

Figure 1 Main Menu .. 6

Figure 2 Classification of manually entered commands. .. 7

Figure 3 Classification of executed commands. ... 8

Figure 4 Highest-scoring Convolutional Neural Network model .. 11

Figure 5 Highest-scoring Gradient Boosting model .. 11

Figure 6 Highest-scoring Support Vector Machine model .. 11

Figure 7 Support Vector Machine - command classification time .. 12

Figure 8 Convolutional Neural Network - command classification time ... 12

Figure 9 Gradient Boosting algorithm – command classification time .. 12

5

1. Introduction

Command obfuscation is a significant threat capability that can be challenging to detect. The rules

and alerts organisations have in place to detect specific commands fail to work when the commands

are obfuscated, even if only one character has been added. While two machine learning tools have

already been developed to detect command line obfuscation, they focus on non-synonymous

command lines that do not appear obfuscated in logging tools like Sysmon. As a result, an

organisation’s existing rules and alerts for specific command and argument pairings will still be

effective against these types of obfuscated commands.

However, obfuscation in synonymous commands poses a more significant risk to organisations as

the command remains obfuscated even in the logging tool, making detection and response more

challenging. To address this issue, this product was developed to identify the execution of

synonymous commands. The product is designed to inform Security Operations when an obfuscated

command has been executed, allowing them to investigate and respond accordingly.

It is important to note that the tool was not designed to prevent the execution of obfuscated

commands or to provide details on the nature of the obfuscated command. Instead, its primary

purpose is to alert Security Operations of potentially malicious activity, as there is no legitimate

reason for obfuscating commands.

This document provides detailed information on product development and the challenges faced. It

details the creation of a custom dataset, the implementation of three different machine learning

algorithms (SVM, Convolutional Neural Network (CNN), and Gradient Boosting Classifier (GBC)), and

a comparison of their performance metrics. It also discusses the tool's features, system resource

usage, and benchmarking of the algorithms. Furthermore, the document outlines the testing process

and the learning outcomes from the project and highlights the project's successes and limitations.

Suggestions for future improvements are also provided.

6

2. Final Product

The project’s final product uses the Support Vector Machine (SVM) algorithm, also known as SVM.

Although the SVM algorithm did not achieve the highest score among the three tested algorithms,

its faster processing time compared to the highest-scoring algorithm, the Convolutional Neural

Network (CNN), compensates for the difference. Figure 1 shows the tool’s Main Menu, the first

screen that appears when the tool is launched. The Main Menu provides an overview of the tool's

features and allows users to select the option they want.

Figure 1 Main Menu

2.1. Features

The first feature of the tool is the classification of manually entered commands. Upon selecting this

option, the user is prompted to enter the desired command, and the tool will output its

classification. Figure 2 illustrates the user interface for this feature and displays how the tool

presents the classification.

The second available feature is the classification of a larger number of commands from a file. Upon

selecting this option, the user provides the path to the file, and the tool examines the commands

contained in the file.

The third feature focuses on classifying commands executed on the device by integrating Sysmon

and PowerShell into the tool. Sysmon is used for logging all executed commands on the device. To

achieve this, the tool is configured to monitor Process Creation events without ignoring any events,

even though professional environments might filter out noisy events. This approach ensures a larger

number of commands are captured for testing and accommodates companies that may record all

events.

PowerShell plays a crucial role in gathering the Process Creation events logged by Sysmon by

extracting the command line part and writing each command to a file for classification. The script

first checks if it runs with administrator privileges and relaunches with elevated permissions if

7

necessary. It then retrieves the last recorded timestamp from a file. If there is no timestamp, it sets

the start time to the minimum possible value, assuming that the program was never before

executed on the device and that all commands need to be classified. The purpose of the timestamp

file is to keep track of the starting point for classifying commands. This ensures that the tool does

not have to classify all commands every time the script is run, significantly reducing the processing

time and resources required for classification. The tool can efficiently focus on classifying new

commands executed since the last run by maintaining a record of the previously processed

commands through the timestamp file.

Next, the script filters Sysmon events with ID 1 (Process Create) and extracts the CommandLine

property (index 10) from each event. These commands are saved to a file, and the new timestamp is

stored in the timestamp file for future reference. After PowerShell completes its execution, the tool

individually classifies each command and reports the number of obfuscated and unobfuscated

commands.

Figure 2 Classification of manually entered commands.

8

Figure 3 Classification of executed commands.

9

2.2. Future Work

At the beginning of the project, the tool was envisioned to be able to run in the background,

automatically collect all executed commands, and classify them without user intervention. The tool

was intended to alert an authorised user via SIEM or email if an obfuscated command was detected.

However, that feature was not developed due to time constraints and the difficulty of developing a

background process that would not expose the device to additional issues.

To overcome this challenge, an alternative plan was devised that resulted in the third feature of the

tool, which focuses on classifying executed commands. This approach requires a user to run the tool

on the device instead of running automatically in the background. Because an authorised user is

already using the tool, an alert is unnecessary.

While the tool does not currently run in the background, it still is able to classify already executed

commands on a device which is a great alternative for detecting potential threats and proving that

already executed obfuscated commands can be detected. In future project iterations, the current

code for gathering commands from Sysmon with PowerShell should be utilised to create the

program as a background process.

10

3. Machine Learning Component

3.1. Dataset

One of the primary challenges faced during this project was the lack of an available real-world

dataset consisting of executed commands from a professional environment. As a result, a custom

dataset was created containing both obfuscated and unobfuscated commands. Constructing this

dataset proved to be time-consuming, as obfuscation could not be automated due to its varying

nature and the acceptance of different obfuscation types by different programs. To ensure the

dataset's realism, all commands were obfuscated manually.

This inability to source a pre-existing dataset led to two key issues. First, the dataset comprised only

850 commands, which is smaller than typical dataset sizes. Second, it is important to note that the

unobfuscated commands were also manually created and may need to be more representative of

commands encountered in professional settings. This may affect the model's accuracy in real-world

scenarios, as it was specifically designed for use in professional environments. Further verification

and testing with real-world data should further improve the model’s accuracy and ensure its

effectiveness.

3.2. Text Pre-processing

Three different machine learning algorithms were implemented for command classification: Support

Vector Machine (SVM), Convolutional Neural Network (CNN), and Gradient Boosting Classifier (GBC).

Each model underwent different data pre-processing.

For the SVM model, the text data was pre-processed using CountVectorizer with character-level n-

grams ranging from 1 to 3. This method encodes the text by counting the frequency of n-grams in

the text, which provides the feature vectors for the SVM model. That was done to try and capture

patterns and structures within the text. The data was then split into training and testing sets, and

the SVM model was trained on the vectorised data.

In the CNN model, the Tokenizer class was utilised at the character level to tokenise and encode the

text data. The program also included an additional feature, the number of special characters in the

command. The encoded text data was then concatenated with the additional feature and split into

training and testing sets. The CNN model included a Conv1D layer to learn patterns in text,

MaxPooling1D to select important features, Dense layers to combine all features, and a Dropout to

prevent overfitting. The model was then trained on the reshaped input data.

The Tokenizer class was again used at the character level for the GBC model to tokenise and encode

the text data. However, this model included two features: entropy and the ratio of special characters

in the command. The encoded text data was concatenated with these features and split into training

and testing sets. The GBC model was then trained on that data.

11

3.3. Benchmarking Algorithms

3.3.1. Accuracy

The CNN model achieves the highest F1 score, which indicates a superior balance between precision

and recall. This suggests that the CNN model is more effective in identifying true positives while

minimising false positives and false negatives.

The SVM model demonstrates a slightly higher F1 score than the GBC model and has a better recall.

This implies that the SVM model is more successful in detecting true positives but may produce

more false positives than the GBC. However, the SVM model's overall performance still falls short of

the CNN model.

In contrast, the GBC exhibits the highest precision among the three models but suffers from the

lowest recall. This indicates that the GBC is more conservative in predicting positive cases, which

may lead to a higher rate of false negatives. Despite having a higher accuracy than the SVM model,

the GBC model's overall performance, as measured by the F1 score, is lower than that of the SVM

and CNN models, suggesting that it may not be as well-suited for this specific task.

Based solely on these metrics, the CNN model appears to be the most effective choice for this

detecting obfuscation. The SVM model offers a reasonable alternative with slightly lower

performance, while the GBC model's lower recall makes it less desirable for this task.

Figure 4 Highest-scoring Convolutional Neural Network model

Figure 5 Highest-scoring Gradient Boosting model

Figure 6 Highest-scoring Support Vector Machine model

12

3.3.2. Speed and resource usage

It is essential to consider the time and system resource usage associated with each algorithm. Let's

compare the time each model would take to process 10,000 commands to provide a more tangible

comparison.

The GBC model shows an average classification time of 4.13 seconds for 10,000 commands. The SVM

model demonstrates a slightly longer classification time per command, resulting in around 5.37

seconds for 10,000 commands. GBC and SVM models have the same system resource usage, with

the highest CPU usage reaching 40%. The main increase in CPU usage for these models is attributed

to PowerShell gathering commands. More details on the resource usage for SVM can be found in the

Testing section of the report.

On the other hand, the CNN model shows significantly higher classification times, averaging

0.149982 seconds per command. This leads to a considerably longer processing time for 10,000

commands, taking approximately 24.997 minutes. Furthermore, the CNN model shows substantially

higher system resource usage, with CPU reaching 100%, memory at 92%, and disk usage at 2%.

CNNs are known to be computationally intensive compared to algorithms like SVM and GBC. This is

because CNNs are designed to process grid-like data, such as images, and their architecture consists

of multiple layers. The multi-layer structure adds to the computational complexity of CNNs, slowing

it down. Additionally, CNNs rely heavily on matrix operations like convolutions, which are

computationally expensive. (IBM, n.d.) In contrast, algorithms like SVM and GBC do not involve such

extensive matrix operations, resulting in shorter processing times.

In conclusion, even though the CNN model provides superior performance in terms of balancing

precision and recall, it is accompanied by significantly increased classification times and system

resource usage compared to the GBC and SVM models. Considering these factors is crucial when

choosing the most appropriate model for the task for a real-world application.

Figure 7 Support Vector Machine - command classification time

Figure 8 Convolutional Neural Network - command classification time

Figure 9 Gradient Boosting algorithm – command classification time

13

4. Testing

This project was tested in multiple stages to ensure the tool was functioning as intended. Initially,

testing focused on validating individual functions within the Python script. Tests were also

conducted to confirm that PowerShell was correctly elevating privileges and collecting commands

from Sysmon while Python processed them as intended.

Tests were conducted using a laptop with the following specifications: AMD Ryzen 5 3500U with

Radeon Vega Mobile Gfx (2.10 GHz), 8 GB DDR4 RAM, 256 GB SSD, AMD Radeon Vega 8 Graphics,

running Windows 11 Home (64-bit). The software environment included Python 3.9.15, Keras 2.10.0,

scikit-learn 1.1.3, Pandas 1.5.2, and NumPy 1.23.4.

The tool's start-up time was measured, and it was found that it takes between 2 and 4 seconds to

initialise. The system was also tested with a large number of commands to determine its

performance under stress, and it was found that the number of commands processed did not

significantly impact the tool's performance.

To test the tool’s impact on system resources, the following measurements were made by taking an

average after 5 minutes of observation:

Idle state:

• CPU usage: 6%

• Memory usage: 68%

• Disk usage: 1%

Typical activities state (web browsing, office applications, etc.):

• CPU usage: 50%

• Memory usage: 88%

• Disk usage: 10%

Normal operation of the tool (tool running and classifying one command):

• CPU usage: 15%

• Memory usage: 87%

• Disk usage: 1%

Peak operation of the tool (getting commands from Sysmon and classifying a large number of them):

• CPU usage: 40%

• Memory usage: 88%

• Disk usage: 2%

Comparing the baseline testing results with the resource usage while running the tool, it can be

concluded that the tool has a relatively low impact on system resources. During normal operation,

the tool decreases CPU usage by 35% and maintains similar memory and disk usage compared to the

typical activities state. During peak operation, the tool reduces CPU usage by 10% compared to the

typical activities state while keeping memory usage at the same level. The disk usage increases by

only 1% compared to the idle state. The testing device has high memory usage during typical

activities, and the tool does not significantly increase resource consumption, indicating that it

operates efficiently within the available system resources.

14

5. Learning Outcomes

In this project, I achieved several technical and personal learning outcomes which will help me in my

future career.

5.1. Technical

From a technical standpoint, I gained proficiency in Python, a programming language I had not used

previously. My experience was limited to C++ and Java. Additionally, I had the opportunity to learn

about machine learning, specifically Convolutional Neural Networks (CNNs), Support Vector

Machines (SVMs) and Gradient Boosting Classifier. I used Keras and Scikit Learn to construct various

machine learning models to classify obfuscated commands successfully.

Moreover, I learned how to pre-process and handle text data, load datasets, engineer features, and

divide data into training and testing sets. My project also entailed writing and executing PowerShell

scripts to extract data from Sysmon logs and relaunch scripts with administrator privileges.

Ultimately, I successfully integrated the machine learning model, Python script, PowerShell and

Sysmon, allowing for the classification of commands executed on a device.

5.2. Personal

On a personal level, I improved my time management skills by allocating appropriate time to various

project stages, including research, implementation, evaluation, and testing. Adaptability also played

a significant role in my project, as I learned new concepts, programming languages, and tools to

address project challenges.

Lastly, I had the opportunity to improve my writing skills by creating all the necessary

documentation for this project. This was a valuable experience, as English is not my first language.

15

6. Conclusion and Project Review

During the project, several aspects contributed to the overall success. Despite not having prior

knowledge of machine learning, I successfully implemented various machine learning models.

Furthermore, I employed three different algorithms and adjusted each to achieve an F1 score above

0.85. Finally, I developed a working product capable of classifying obfuscated commands executed

on a device.

On the other hand, I had an unexpected challenge of finding a suitable dataset led to creating a new

dataset from scratch. While the resulting dataset may not fully capture the range of commands

executed in a professional environment, it is a starting point that can be refined with further

feedback and usage. With the potential to be integrated into anti-malware products or other

security tools, the tool has the opportunity to evolve and improve over time.

Regarding the potential improvements of the project, one is that the tool does not run automatically

in the background. As a result, it does not alert users via SIEM or email when obfuscated commands

are detected. However, this presents an opportunity for the tool's future development, and

implementing this feature could be an excellent direction for further work.

If I were to approach this project again, I would allocate more time to creating the dataset or finding

a company willing to share their employee’s command history with me to develop this tool.

Furthermore, I would invest more time researching the complexity of background processes and

understanding their potential associated challenges, enabling the development of a more advanced

and effective tool for detecting obfuscated commands.

Rather than spreading my efforts across multiple algorithms, I would concentrate on a single

algorithm, choosing SVM or GBM for their speed. I would work diligently to optimise the algorithm

and achieve an even better F1 score, aiming as close to 1 as possible. Alternatively, if they cannot

surpass their current highest F1 score, I would focus entirely on developing the tool as a background

process. In that case, I’d suggest perfecting the CNN model, as speed is less of a concern if

commands are classified as they are executed rather than processing thousands of them all at once.

This focused approach would likely result in a more efficient and effective tool.

Regarding technology choices, using Python, Keras, and the Anaconda environment for

implementing machine learning models was the right choice due to their versatility and extensive

community support.

In conclusion, the project can be considered a success because it achieved its primary goal of

detecting obfuscated commands in the CMD environment. I believe the overall results make this

project a valuable contribution to cybersecurity.

16

7. Acknowledgements

I want to thank my project supervisor Hisain Elshaafi for the guidance and support throughout the

project. His expertise and insights helped shape the project’s direction and ensure its success.

I would also like to thank the other lecturers at SETU who provided valuable feedback and support

during this project and the entire course. Their contributions and encouragement were greatly

appreciated.

17

Declaration of Plagiarism

I declare, this document in this submission in its entirety is my own work except for where duty

acknowledged. I have cited the sources of all the quotations, paragraphs, summaries of information,

tables, diagrams, or other material. This includes software and other electronic media that is integral

property rights may reside. I have provided the complete biography at the end of my document

detailing all the works and resources used in the presentation of this submission. I am aware that

failure to comply with the Institute’s regulations governing plagiarism constitutes a serious offense.

Student Melanie Dudas – C00253245

Project Supervisor Hisain Elshaafi

Institution South East Technological University

Title CMD Obfuscation Detection Tool - Final Report

Submission Date 17/04/2023

 Melanie Dudas

 Signature

