
0 
 

 

 

 

                                   

BOOKBYTE 

Final Report 

      

 

(SUPERVISOR) JAMAL 
 
(STUDENT C00260735) CONOR 
BROOKE 



1 
 

 

Table of Contents 
 

Introduction ............................................................................................................................ 2 

Project Description ................................................................................................................... 2 

Implementation of Key Functionality ....................................................................................... 3 

Uploading PDFs for Segmentation: ...................................................................................... 3 

Segmenting Reading Material: ............................................................................................ 3 

Progress Tracking and Reading Streaks: ................................................................................ 4 

Notification system ........................................................................................................... 4 

Adapt Reading Segments ....................................................................................................... 5 

Algorithms Implementation: ............................................................................................... 5 

Potential Improvements for Future Development ........................................................... 5 

Technical Description ............................................................................................................ 6 

Firebase Cloud Functions ................................................................................................... 6 

Android Studios ................................................................................................................ 6 

Kotlin .............................................................................................................................. 7 

TypeScript ........................................................................................................................ 7 

Final Screens ........................................................................................................................ 8 

Login Screen ........................................................................................................................ 8 

Register Screen .................................................................................................................... 9 

Forgot Password Screen ...................................................................................................... 10 

Difficulty Selection Screen ................................................................................................... 11 

Custom Word Count Screen ................................................................................................. 12 

Upload Content Screen ....................................................................................................... 13 

Upload Content Confirm Screen ........................................................................................... 14 

Library Screen .................................................................................................................... 15 

Gutenberg Library .............................................................................................................. 16 

Challenges Faced ................................................................................................................... 17 

Firebase Cloud Function ...................................................................................................... 17 

Challenges With Parsing PDFs .............................................................................................. 18 

Learning Outcomes ................................................................................................................ 19 

 

  



2 
 

Introduction 
 

This final report presents an overview of BookByte, an Android application specifically 

developed to improve users reading habits. BookByte addresses the challenge of managing 

large reading materials by implementing a core feature known as 'chunked content delivery'. 

This feature allows users to upload their PDFs, which the app then segments into smaller, 

more manageable pieces. These segments can be customized in size and complexity, evolving 

in response to the user's improving habit. 

The idea for BookByte was to create a tool that not only encourages regular reading but also 

makes the activity less daunting and more adaptable to each individual reader The app 

implements  functionalities like reading streaks ,progress tracking, and gamification to 

motivate users to read each day. Additionally, its notification system helps in maintaining user 

engagement by providing users reminders to continue their reading journey. 

The overall goal of BookByte is to enhance and promote continuous learning. By simplifying 

the reading process and making it a daily habit, the app aims to support learning in today's 

digital society. This report will detail the development process, key features, user feedback, 

and future directions for BookByte. 

 

Project Description 
 

BookByte is an Android application developed to enhance reading habits among users. The 

primary aim of the app is to improve the development of new, consistent reading habits by 

breaking down text into manageable segments. This feature allows users to engage more 

effectively with their reading materials, growing more efficient reading practices. In this 

section of the report, we will detail the key functionalities implemented in BookByte to 

achieve this goal, highlighting how these features contribute to the app’s effectiveness in 

promoting regular reading habits 

 

. 

 

 

 

 

 

 



3 
 

Implementation of Key Functionality 

 

Uploading PDFs for Segmentation: 

The PDF upload and segmentation functionality in BookByte involves three main steps: 

 

1. Retrieving the PDF from Android Storage: 

The app accesses the Android device storage to locate and select the desired PDF file. 

2. Conversion of PDF to URI and Transmission to Firebase: 

The selected PDF is converted to a URI and sent to Firebase for processing. 

3.    Triggering the Firebase Cloud Function for Segmentation: 

The upload of the URI in Firebase Storage automatically triggers a Cloud Function that 

begins the segmentation of the PDF into manageable segments. 

This process allows users to easily upload any PDFs to their library. 

 

Segmenting Reading Material: 

The segmentation process for reading materials in BookByte involves many steps: 

 

1. PDF Retrieval and Directory Creation: 

Once a PDF is uploaded, it is retrieved from cloud storage and a dedicated directory is 

created for storing each users segmented PDFs. This ensures user data is separate to 

allow for easily accessible segments in the app. 

2. PDF Validation and Segmentation: 

The PDF is checked for validity. After confirmation, the cloud function retrieves the user's 

word count from Realtime-DB, and the PDF is segmented. This process adapts the 

reading segments to the user's preferred word amount. 

3. Adaptive Segmentation with Segment Adapter Algorithm: 

If the segment adapter algorithm is triggered by updated user preferences or, 

dynamically within the Android app, the segmentation process is also triggered creating 

new segments with updated sizes. These replace the previous segments to adapt to the 

user's improving reading habits. 

 

 



4 
 

Progress Tracking and Reading Streaks: 

The progress tracking and reading streak features in BookByte are designed to motivate users 

by monitoring the progress of their reading habits: 

 

1. Updating Reading Streaks: 

A reading streak is updated each time a user completes their daily reading segment. The 

streak can only be updated once per day, and the app tracks this timing to ensure 

accuracy. 

2. Time Tracking for Reading Segments: 

The app records the time it takes for a user to complete each reading segment. These 

times are then stored in cloud storage for future analysis and reference. 

3. Data Utilization and Analysis: 

The recorded times are used to generate a graph displaying the user's reading times, 

highlighting their fastest and slowest times. This visual graph helps users understand their 

reading patterns and encourages improvement. 

4. Tracking Overall Progress: 

Additionally, the app keeps track of the total number of segments a user has completed 

and records the longest reading streak achieved.  

 

Notification system 

1. Setting Notifications with AlarmManager: 

 The app utilizes Android's AlarmManager to schedule notifications at a specific time 

 each day. This ensures that users receive a consistent reminder to engage with their 

 reading material. 

2. Notification Channel Creation: 

 A notification channel is created to manage how notifications are shown to the user. 

 This channel helps in organizing notifications. 

3. Reading Streak Reminders: 

 The primary purpose of these notifications is to remind users to maintain their reading 

 streak. By encouraging daily interaction, the app aims to foster consistent reading 

 habits. 

 



5 
 

Adapt Reading Segments 

This feature is a critical component of the application, dynamically adjusting the segment size 

in response to users reading metrics. Below the implemented algorithm is discussed along 

with potential improvements. 

 

Algorithms Implementation: 

This algorithm can be potentially triggered after the completion of a daily reading segment. 

The algorithm gathers metrics accessible within the app and from Firebase storage to 

calculate the user's reading difficulty level.  

Metrics Passed Into generateSegmentSize(): 

 currentStreak: Reflects the user's consistency. A higher streak indicates readiness for 

increased segment size, as it indicates regular engagement this is controlled by 

different ranges and also different milestones e.g., reaching 7 days gives small 

segment boost. The streak increase eventually caps out at a maximum value. 

 

 daysMissed: Reflects lapses in reading habit. More days missed signals a need for 

easier or shorter segments to rebuild the user's habit. 

 

 timeToCompleteSegment: Directly measures how long it takes a user to finish a 

segment. Longer times suggest that the segment is too challenging. Also compared to 

national average and user set reading averages. 

 

 averageCompletionTime: Provides a baseline for comparison against individual 

segment completion times, helping to adjust future segments to better fit the user's 

pace. 

 onSameDay: Tracks whether the segment was completed on the same day another 

segment was completed. Reading many segments a day indicates the current segment 

size is too manageable. 

The algorithm decides if an increase or decrease in difficulty is needed after calculations. The 

app prompts users that segments have been recalibrated.  

 

Potential Improvements for Future Development 

 

Use Of Machine Learning: 

Implement a machine learning model to predict optimal segment sizes based on user 

engagement over longer periods, utilizing changing reading abilities and schedules. 

 



6 
 

Further User-Tested Segment Adjustments: 

Further user testing to gather more data on how different segment sizes affect reading 

consistency and engagement. Utilize this data to fine-tune the algorithm, ensuring it better 

aligns with different user preferences 

 

Technical Description 
 

Firebase 

In the development of BookByte, multiple features of Firebase were used to improve 

functionality and user experience. Firebase Authentication was added to manage user sign-

ins and sign-ups securely, ensuring a safe environment for users to store and access their 

data. Firebase Storage was crucial for handling large files, particularly for the uploading and 

retrieval of user PDFs, providing file management within the app. Additionally, Firebase 

Realtime Database was integrated to provide real-time data synchronization across all user 

devices. This feature allowed for instant updates of reading segments, user progress, and 

other dynamic content, so that the user experience was very responsive. The combination of 

these Firebase services provided a robust backend infrastructure that supported the 

requirements of BookByte, from user management to data storage and real-time updates. 

 

Firebase Cloud Functions 

Firebase Cloud Functions has a massive role in the execution of most key functionality in 

BookByte. It provides a serverless computing solution that executes backend code in response 

to events triggered within or outside of Firebase. This technology was used for its flexibility 

and scalability, which are essential for handling tasks like data processing and dynamic 

segmentation of PDFs. By using Firebase Cloud Functions, BookByte doesn’t have to perform 

heavy data processing on its users devices which allows that app to feel more responsive and 

improves the apps overall performance. This serverless approach not only reduces overhead 

costs but also enhances the app's ability to scale according to user demand, ensuring a 

responsive service for generating users reading segments. Cloud functions also provided an 

easy way to modify data in services such as Firebase Storage or Realtime Database 

 

Android Studios 

For the development of BookByte, Android Studio was used as the primary integrated 

development environment (IDE). Android Studio's is the easily the best, and maybe only, 

choice for Android application development. It offers a large platform for designing, testing, 

and debugging, which helped facilitate the development of BookByte's intuitive user interface 

and the easy integration of its functionalities. Android Studio's support for native Android 



7 
 

technologies ensured that BookByte could use the full capabilities of the Android operating 

system, resulting in a more efficient application. The IDE's built-in features, such as the 

emulator, notification system, UI/UX design tools and code analysis tools, allowed for a 

smooth development process. Although I had limited experience with this software before 

starting the development of my app, I had no difficulties diving right into the development 

process. 

 

Kotlin 

For the development of BookByte, Kotlin was selected as the programming language, despite 

being new to me. The decision to use Kotlin was due to its easy integration with Android 

Studio. Kotlin's concise syntax and new features, such as the removal of getters and setters, 

made it an improvement over Java. The language's ability to reduce boilerplate code 

significantly helped in the creation of a robust and reliable app. Kotlin's safety features, like 

nullability checks, also contributed to creating a more stable app, making it a better overall 

choice for developing BookByte. 

 

TypeScript 

TypeScript was chosen to program the functionality of the Firebase Cloud Functions used in 

BookByte. The use of TypeScript allowed for more maintainable and error-resistant code, 

making it ideal for handling the complex logic required by Firebase Cloud Functions. This 

programming language allowed for the development of efficient functions that respond to 

real-time events within BookByte. 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Final Screens 
 

Login Screen  

 

 

 

The login screen is the initial activity loaded when BookByte launches. Here, users are 

prompted to enter their username and password to log in. For new users wanting to join the 

app, a 'Sign Up' link is conveniently positioned at the bottom of the page, which redirects 

them to the registration screen. Additionally, the screen includes a 'Forgot Password' feature, 

providing a straightforward way for users to recover access to their accounts should they 

forget their credentials. This setup ensures a user-friendly and accessible interface, facilitating 

smooth navigation for all types of users. 

 

 

 

 



9 
 

Register Screen 

 

 

 

The register screen is designed for new users to create their account on BookByte. Here, 

users are required to input their details to sign up, including their username, email address, 

and a password. This screen maintains the same color scheme and layout as the login page, 

providing a consistent user experience. However, it requires additional information to ensure 

each account is uniquely identified and secured. This consistency in design helps users 

navigate the sign-up process smoothly while distinguishing between login and registration 

functionalities 

 

 

 

 

 

 



10 
 

Forgot Password Screen 

 

  

 

The Forgot Password screen offers a straightforward way for users who need to regain access 

to their BookByte account after forgetting their password. Upon entering this screen, users 

are prompted to input the email address associated with their account. After the email 

address is submitted, Firebase Authentication sends a password reset link to that email inbox. 

Users can then follow this link to securely change their account password. This process is 

designed to be user-friendly and efficient, ensuring that users can quickly restore access 

without unnecessary complications. 

 

 

 

 

 

 

 

 



11 
 

 

Difficulty Selection Screen 

 

 

 

The difficulty level screen allows users to choose between four different levels of difficulty: 

beginner, average, experienced and custom. After entering this screen, users are prompted 

with the four difficulty levels, each designed to tailor the user's skill level and preference.  

Users can select their skill level by entering the number of words they want to read daily 

manually in the custom section or by using the slider. The slider has predefined word metrics 

ranging from beginner to experienced. 

 

 

 

 

 



12 
 

 

Custom Word Count Screen 

 

 

 

After a user clicks the custom button on the difficulty selection screen a smaller screen opens, 

giving the option for the users to customize their word count goal. After opening this screen 

users find a box where they can manually input their preferred word count. Adjacent to the 

input box there is a plus button, which users can use to adjust the word count, increasing it by 

10 each time the user taps it. Users can also hold down the button to reach their desired 

word count. After the user has entered their desired word count, they can then save their 

selection by clicking the ‘confirm’ button located at the bottom of the screen. 

 

 

 

 

 

 



13 
 

Upload Content Screen 

 

 

 

The upload content screen enables users to upload reading materials to the app's library. 

After opening this screen users are presented with the option to upload a PDF, such as a 

book, article, or document. Users can upload a PDF by tapping on the ‘upload PDF’ orange 

button located in the bottom half of the page. 

 

 

 

 

 

 

 

 

 



14 
 

Upload Content Confirm Screen  

 

 

 

After uploading a document, the user is brought to a smaller screen within the upload 

content screen, asking them to confirm their upload decision. The screen displays a simple 

prompt asking the user “Are you sure you want to upload?”, users are then given two options: 

“Upload” to confirm the upload or “Cancel” to cancel the upload.  

 

 

 

 

 

 

 

 

 



15 
 

Library Screen 

 

 

 

The library screen acts as a central hub where users can access their collection of reading 

materials within the BookByte app. After entering this screen users are given a visually 

organized display of all their uploaded documents, sorted alphabetically by title. Each 

document displays a title and an author and also includes a close button indicating the 

deletion of a book. Users can browse through their library in alphabetical order or by using 

the search bar at the top of the page. 

 

 

 

 

 

 

 

 



16 
 

Gutenberg Library 

 

 

The Gutenberg library within the BookByte app provides users with a collection of free 

eBooks from Project Gutenberg, it is a well-known digital library offering over 60,000 public 

domain titles. 

  



17 
 

Challenges Faced 
 

Firebase Cloud Function 

Throughout the development of BookByte, integrating Firebase Cloud Function features 

presented a lot of challenges: 

 

Learning Curve: 

The initial challenge was researching how to utilize Cloud Functions for the segmentation 

functionality I was trying to achieve. This involved understanding the setup, deployment, and 

management of Cloud Functions. I had to learn how Cloud Function could work for my 

specific use case and how I would test this to find out. 

Small Storage Connection Issues: 

Early in development, there were challenges getting a connection between Cloud Functions 

and Firebase Storage. Due to an incorrect bucket URL in admin configurations in Cloud 

Function causing early frustration as I couldn’t send or receive any data from Stroage.  

Minor Dependency Issue: 

A dependency issue in Android Studio related to Firebase prevented early testing of 

segmentation functionality in Cloud Functions. 

Debugging Delays: 

Debugging the Cloud Function code was particularly challenging due to the slow deployment 

process. Each change required redeployment, significantly slowing down troubleshooting and 

testing. 

Familiarization with Google Console Logs: 

Adapting to the Google Console Logs interface was necessary to monitor and debug 

functions, but this too required a learning period to understand and begin to use effectively. 

Project Gutenberg Challenges: 

Challenges around retrieving data from Project Gutenberg and splitting it into images, 

metadata and pdfs caused a lot of wasted time constantly fixing and redeploying to get it 

working. Eventually had to use a separate API Gutendex. 

Segmentation Code Issues: 

Numerous problems with the segmentation code, designed to divide text into manageable 

reading segments. Getting this functioned correctly was critical for the core reading 

experience offered by the app and was one of the biggest challenges faced in this project. 

 



18 
 

Challenges With Parsing PDFs 

Parsing PDFs to segment text by size was the greatest technical challenge during the 

development of BookByte. The core issue was extracting text from PDFs while preserving 

original formatting elements such as headings, fonts, bullet points, and images. This 

preservation was crucial to display the parsed text accurately within the reading segment 

viewer. 

 

Initial Attempt with PDF.js: 

The initial strategy involved using the PDF.js library to extract the PDF's format and save it as a 

JSON file. I then attempted to re-parse the extracted text using a JSON object. While this 

approach was partially successful, it was highly inefficient—segmenting text for each reading 

segment took nearly five minutes, rendering the process impractical for real-time use. Plus 

having to wait for the segment, change code in Cloud Function, redeploy code, and then 

segment text again, wasting nearly 10 minutes every time I wanted to try modifying any code. 

 

Switch to Apache PDFBox: 

In search of a more efficient solution, I tried the Apache PDFBox library, which allowed for 

saving text formatting in an XML layout. However, this method required setting up a Docker 

container and hosting it on Google Cloud, which introduced additional complexity and 

maintenance challenges. 

 

Challenges with PDFBox: 

Despite the potential of Apache PDFBox, I had significant difficulties in getting the PDFBox 

container to function correctly. Also, trying to work between three different environments 

was frustrating and confusing. The time and resources spent trying to get this solution 

working ended up becoming wasteful, leading me to abandon this approach before I left it 

too late. 

 

Final Solution with pdf-lib: 

Eventually, I implemented the pdf-lib JavaScript library, which provided a more 

straightforward solution to the segmentation problem. This library allowed for effective text 

segmentation without the need to preserve complex formatting, aligning better with the 

project's needs. 

 

 

 



19 
 

Learning Outcomes 
 

Learn How to Develop an App: 

I got experience working on all aspects of developing a functional Android app and Firebase 

Cloud Functions. This provided me with hands-on experience in handling all stages of app 

development, from coming up with the idea to completion. 

Chance To Try Agile Practices: 

This project allowed me to learn how to develop an app in an agile way. I participated in 

regular meetings with a supervisor, followed strict deadlines for app documentation, which I 

got  a chance to improve upon over each iteration. This iterative process of development 

allowed me to grasp a better understanding of the agile. 

Learned New Technical Skills: 

I learned to use Android Studios and Kotlin, a new programming language for me. I got a 

chance to try many different libraries and technologies throughout the development of the 

app e.g., Docker. Additionally, I developed my skills in designing user interfaces using XML 

layouts, which improved my technical and design skills massively. 

Firebase Features: 

The project was an opportunity to dive into the many great features of Firebase, gaining 

valuable skills in a widely used backend service. This experience could be particularly 

beneficial for my future projects and possibly my development career. 

Documentation Practice: 

I got to create and improve upon several types of documentation common in software 

development, such as functional specifications, design documents, and various reports. 

Setting both functional and non-functional requirements helped me in understanding and 

defining what was needed for the app to succeed. 

UI/UX Design: 

Improving my UI/UX design skills was a crucial part of this project. I learned to better 

understand user needs and ensure the interface was both appealing and functional, focusing 

on creating an easy to use and engaging user experience. 

 

 


	Introduction
	Project Description
	Implementation of Key Functionality
	Uploading PDFs for Segmentation:
	Segmenting Reading Material:
	Progress Tracking and Reading Streaks:

	Adapt Reading Segments
	Algorithms Implementation:
	Potential Improvements for Future Development


	Technical Description
	Firebase Cloud Functions
	Android Studios
	Kotlin
	TypeScript

	Final Screens
	Login Screen
	Register Screen
	Forgot Password Screen
	Difficulty Selection Screen
	Custom Word Count Screen
	Upload Content Screen
	Upload Content Confirm Screen
	Library Screen
	Gutenberg Library

	Challenges Faced
	Firebase Cloud Function
	Challenges With Parsing PDFs

	Learning Outcomes

