
SafeDrive AI
Design Document

Department of Computing

Bachelor of Science(Hons) in Software Development

Supervisor: Chris Meudec

Student Name: Shane Kennedy

Student Number: C00263504

Date: 2023

Tables of Contents

Tables of Contents 2
Abstract 3
Introduction 3
Drowsiness Detection 4
Blink Detection 4

Facial Landmark Detection 4
Processing Face Data 5

Eye Aspect Ratio 5
Secondary Focus Detections 6

Driver Distraction 6
Excessive Speed 6

GPS Data Collection 6
Estimation of Road Segment Speed Limit 6

Technologies 7
Machine Learning Architecture 7

Model Selection 7
Model Training 7
Architecture 8
Data Flow Model 8
Model Specification 9
Dataset 9

Technology Stack 9
Frontend Technologies 9
Backend Technologies 10
Machine Learning 10
Version Control 10
IDEs 10

Technical Difficulties 11
React-Native 11

Dependencies 11
Expo Camera 11
TensorFlowJS 12
Face-Landmarks-Detection 12

Sequence Diagrams 13
CRUD Profile 13
Detect Driver Fatigue 14
Detect Driver Distraction 15
Detect Excessive Speed 16

UI Design 16
Navigation 16
Navigation Design 17
Screenshots 18

HomeScreen 18
Monitoring Screen 19
Settings 20

References 20

Introduction
The aim of this project is to develop a cross platform mobile to increase the safety of users while
they are driving on the road. Drivers can install this application on their mobile devices and once
activated the application will use machine learning technology to monitor the driver and their
location details and issue a warning if the application detects that the driver may be fatigued,
distracted or exceeding the speed limit. These conditions are often contributing factors to
accidents so by making drivers aware that they may be at risk, this application will increase the
safety for both the driver and other road users as well.

This design document details a high level model of the operation of the mobile application, its
underlying technologies, how users will interact with the application and the research that
informed the approach to its design. The intended purpose is to give the reader insight into the
central design decision for the proposed application.

Introduction
This document follows on from the functional specification for the application which set out the
requirements that the application should fulfill. This design document will focus on how those
requirements will be best achieved and the high level design decisions that will steer the
specifics of their implementation going forward.

The detection of driver fatigue through the use of machine learning is the key functionality of this
application and as such the document will first look at the best approach to implement this
requirement. This section will look at both the best methodologies for detecting driver fatigue
and their advantages and disadvantages. Once the primary functionality of the application is
complete, the secondary monitoring focus will be the design of the systems for detecting driver
distraction and excessive speed, therefore the design document will next discuss the design
methodologies for the detection of these two driver safety concerns.

The following section will delve into the technological stack that will be used to implement the
chosen methodologies, the reasons they were chosen and how they will be used to build this
application. This section will elucidate the design of the machine learning architecture, the front
and backend technologies which will power the application and the tools which will be used in
the application’s creation.

The final two sections will illustrate the interactions of the components of the application through
the use of sequence diagrams and a high level overview of the application’s user interface with
a flowchart of its navigation menus and prototype screenshots of the application.

Drowsiness Detection
Driver drowsiness or fatigue is a leading contributing factor in road traffic accidents around the
world with the Road Safety Authority of Ireland (RSA) estimating it to be a factor in one in five
road traffic collisions [1]. As the project’s aim is to increase driver safety, this ability of this
application to detect and prevent such fatigue driven accidents is one of its primary value
propositions for its user. As such, the methodology that the machine learning algorithm will use
for detecting driver fatigue is a key design decision for this project.

There has been much research on the use of machine learning in recent years that this project
draws on in the design of the drowsiness detection system. The primary metrics that such a
system may use to determine if a driver is fatigued are blink duration, yawning and head
movement. These indicators can be obtained and analyzed through the use of machine learning
to track key facial features [2]. However, yawning and head movement while they can be
indicative of drowsiness are often less specific and can vary by interpersonal factors [3]. The
proposed design will emphasize the use of blink duration as the central parameter for the first
iteration due to its advantages in terms of accuracy, simplicity and real-time responsiveness.
The second iteration will utilize analysis of both blink duration as a primary indicator and
yawning as a secondary indicator as this multifactorial approach is found to be most successful
in terms of accuracy with studies showing that this combination for fatigue detection can achieve
accuracy level of up to 97% [4].

Blink Detection

Facial Landmark Detection
The detection of blink duration is the primary methodology
chosen to detect driver drowsiness. A facial landmark
detection library is first used to detect key points on the
face corresponding to a number of points around the eye.
The Google Mobile Vision package offers a number of
facial detection libraries with different capabilities for this
application [5]. The Expo Face Detector is part of this suite
and offers easy integration with React Native, face
tracking functionality and eye blink detection built in [6].
The disadvantage of this library however, is that it offers
only a limited number of key detection points. Another

library powered by Google ML kit which offers more comprehensive facial landmark detection
capabilities is the FaceMesh library and its updated version Face-detection-landmarks [7]. This
library developed by Google utilizes a CNN powered by MobileNetV2 as the backend model
architecture to detect 486 points around any face detected in an image. The model returns an
object with a facial bounding box defined as x,y and z coordinates and an array of the key points
in form x,y,z which conform to a 3d model face mesh [8]. Once a face has been detected the
key points corresponding to the left and right eye can be extracted from this set of points. As
part of the development process, this project plans to use a combination of these libraries and
as development proceeds discover which library offers the best performance for each of this
project’s specific requirements.

Processing Face Data
There are two primary methodologies that can be utilized to process the returned face
landmark’s data to perform blink detection. These two methods are the calculation of the Eye
Aspect Ratio to detect the eye state as explained in the next section or the use of the eye
location data to first define a bounding box around the eye. This box can then be used to create
a cropped image of the eye that can be passed onto a pre-trained machine learning model
which can then classify the image based on its training to perform an eye state classification.
The former method has been shown to produce highly accurate results but due to its higher
overhead, the latter technique will be the primary method used for the first iteration of the
machine learning implementation [9].

Eye Aspect Ratio
The Eye aspect ratio is a scalar value which can be calculated from a number of points around
an eye. This value will change in real time as the aspect ratio of a subject's eye fluctuates
allowing the detection of whether an eye is in an open or closed state, the duration that the eye
remains in a closed or semi-closed state and the frequency of blinks.
The image here shows the eye points that the Facial Landmark Detection library returns. The
EAR can be calculated from the points with the following formula [10].

EAR = (|| p2 - p6 || + || p3 - p5 ||) / (2 * (|| p1 - p4||))
The formula utilizes the Euclidean distance
between the points above and below the
eyes divided by twice the distance from the
points to the left and right of the eye to
calculate the scalar value EAR. This value
will drop to near zero when a subject blinks
so a threshold value near zero will be chosen
to indicate an eye in a closed state.
Research in this area has found an EAR
threshold of 0.3 to be an effective first value for registering an instance of a blink so this is the
initial value which will be used [11]. Further fine tuning of this value will then be performed to suit
the non-functional requirements of this application.

Secondary Focus Detections

Driver Distraction
In the computer vision space, various methodologies have been explored in the use of machine
learning for the detection of driver distraction. An effective approach to this problem has been
the use of CNNs and given this project’s use of a CNN for the detection of driver fatigue, the
same approach can be used for the detection of Driver distraction. Effective approaches have
been demonstrated which utilized CNN which tracked driver head position, posture and gaze
estimation [12]. Given the limited resources of running these algorithms on a mobile platform,
this project will utilize the facial landmarks data which will be collected already for the driver
fatigue detection to track driver head position and gaze to make an estimation of driver
distraction events defined by a duration in which the driver head position and gaze deviates
from the average head and gaze position while driving.

Excessive Speed
At its core, the design of the Excessive Speed monitoring process revolved around continuously
monitoring a Driver’s location data and comparing it against the speed limit of the corresponding
road section. This functionality will be achieved through the use of the mobile devices GPS data
location and an external provider to return the current road’s speed limit.

GPS Data Collection
The collection of the device’s GPS location data will be performed by utilizing the Geolation
library provided by react-native community. This library provides the functionality to read a
device's location data and return the current location’s latitude and longitude data [13]. This data
can be used to calculate an estimation of the distance between two separate points across a
time range and calculate the Driver’s current speed. For an accurate estimation of the distance
between these points, the curvature of the Earth must be considered. Here the application will
use the Haversine formula which is a mathematical formula which calculates the distance
between two points on a sphere and can therefore return a reasonable approximation of the
distance between two sets of latitudes and longitudes across the Earth [14].

Estimation of Road Segment Speed Limit
For the retrieval of the current speed limit of the Driver’s current location, the collation of a group
of points into a path is required. The GoogleMaps API can take as a parameter this path and
from this path can estimate the most likely road segment that the Driver is traversing [15]. This
road segment can then be used to query the API for the road segment speed limit. In the
application, the Driver can specify a time limit over which excessive speed can be detected

before a warning is triggered. If the Driver’s average speed is greater than the current road
segment being traveled for over this specified period, a warning for excessive speed can then
be issued to alert the Driver to the potentially unsafe driving condition.

Technologies

Machine Learning Architecture

Model Selection
The selection of the machine learning model for this project is a key design decision for its
implementation going forward. The basis for this decision was the functionality that the model
would need to support which is essentially an image classification task and as such the model
selected was the Convolutional Neural Network (CNN) due to its high suitability for such an
application. CNNs great strength is their ability to recognize patterns in visual data and this
makes them ideal for identifying signs of driver fatigue or the more complex task of identifying
driver distraction [16].

The primary advantage of CNNs for this task are they offer high accuracy in image classification
tasks, reduced calculation compared to other neural network types which is ideal for a mobile
platform and they offer reduced complexity to implement compared to other models which is an
advantage for this project due to the lack of developer experience with machine learning
technologies [17]. The disadvantage of CNNs for this project is that they require large training
datasets to gain the necessary accuracy, however this downside is mitigated by the large
publicly available datasets which are available which can be utilized for model training.

Model Training
The model training approach that was chosen for this project centers on the use of transfer
learning using a pretrained CNN. This method was selected due to its ability to reduce the need
for intense computational power for model development by leveraging models that have already
been trained for image classification tasks. These models then only need to be fine tuned to this
project's specific requirements, saving computational resources and giving the project a strong
foundation to build upon while also saving development time [18].

The machine learning framework that was selected to implement model training is the
TensorFlow library. TensorFlow is highly suitable for this project and offers many advantages in
both the training and deployment of this project's machine learning model. It has achieved wide
scale adoption across the machine learning community and as such offers a comprehensive
suite of both tool sets for training models as well as a strong selection of pretrained models with
different capabilities that can be leveraged to implement this project's functionality [19]. This
wide adoption also means that is capable with many languages and mobile platforms making it
a good choice for development for a mobile application.The disadvantage of TensorFlow is its
complexity to utilize and need for increased computational power, however the wide availability

of training resources and use of transfer learning make this framework align with this projects
requirements [20].

Architecture
The MobileNetV2 machine learning architecture was selected for this project due to its high
suitability for real-time computer vision tasks on mobile platforms. This architecture offers an
exceptional balance between computational efficiency while retaining high accuracy levels
making it a strong candidate to fulfill the requirements of this project [21]. The architecture
offers a pretrained model that has 53 layers and contains a model pre-trained on more than one
million images. This project will leverage this model and utilize TensorFlow combined with
transfer learning to train its parameter weights to the specific needs of this task [22]. The model
will be trained using TensorFlow for the binary classification task of predicting whether an image
is of an open or closed eye over many epochs until the accuracy required is reached.

Once model training is complete the design will use the OpenCV library for image capture and
cropping. This library was chosen due to its wide support and ability to process real time images
efficiently [23]. The NumPy library will be used to reshape the images to the format needed for
the machine learning input layer and the pre-processed images will then be passed to the model
which will return a prediction of whether an eye is open or closed. This prediction can then be
used to determine if a warning should be issued. Based on previous research and to maintain a
balance of conservation of processing power while maintaining accuracy a target capture rate of
20 frames per second will be used [24].

Data Flow Model

Model Specification
The specification for MobileNetV2’s pretrained model is tuned for efficiency targeting
applications running on platforms with limited resources such as mobile devices. With a total of
3,229,889 parameters, MobileNetV2 offers an extremely lightweight design compared to other
popular machine learning architectures such as InceptionV3 which has a much larger
23,851,784 parameter set [25]. Of these MobileNetV2 offers 3,208,001 trainable parameters
giving it the flexibility to be tuned for this project's needs. Overall, MobileNetV2 provides
adequate accuracy while performing well in terms of saving on mobile device processing power
and battery life which is the reason it was chosen for this design.

Dataset
Name: MRL Eye Dataset
Description:
This dataset is a publicly available dataset of images of human eyes originally intended to be
used for a gaze estimation project. It consists of 84,898 images of eyes collected from 37
subjects, 33 men and 4 women [26].
Preprocessing:
Data preprocessing will be performed where the dataset will be broken up into two binary
classes, images with open eyes and images with closed eyes. The images will then be
reformatted to the input shape of the machine learning architecture which is 224 pixels in height,
224 pixels in width and with 3 color channels (RGB) [27].
Link: http://mrl.cs.vsb.cz/eyedataset

Technology Stack

Frontend Technologies
The technology chosen to create the frontend of the application is React Native
due to its robust ecosystem, versatility and cross platform capabilities. React
emphasis on component based architecture facilitates rapid development
through the creation of modular and reusable code blocks. React Native is

powered by Javascript and a Javascript XML (JSX) and
incorporates CSS for styling which allows the creation of
attractive mobile applications.The strong ecosystem around React includes
many available libraries that support integration of frameworks such as
TensorFlow which is ideal for this project’s design. React Native also allows the
creation of a single codebase that can be deployed to both iOS and Android
which is another big strength for this project’s requirements [28].

http://mrl.cs.vsb.cz/eyedataset

Backend Technologies
This project’s requirements include the ability for the application
to send anonymous debug reports for quick debugging of any
issues, an important feature for an application which must offer a
high level of reliability as it is dealing with driver safety. For this
requirement, Firebase was chosen as the backend server infrastructure due to its suitability for
reliable, real-time data logging. Firebase’s real-time database ensures that the debug reports
are instantly accessible allowing fast response to any application’s issues. Firebase also offers
inbuilt security and authentication features which are easy to implement and deploy making it
suitable for future development of more advanced Driver profile systems [29].

Machine Learning
The Project will use TensorFlow JS for model selection and model training and
on device image preprocessing.

The Project will use the MobileNetV2 model as the model architecture upon
which the machine learning algorithm will be built. This model architecture
comes included in the Keras library of TensorFlow.

The OpenCV library will be used for the image preprocessing during model
training before the images are passed to the machine learning algorithm.

Version Control
For application data backup and version control, this project leverages the
industry standard of Git for local version control, paired with GitHub for
remote backup. Git is renowned for its highly effective version control
abilities and allowed seamless tracking of changes and enabled major

changes to the project code to be stored in separate branches in case a
reversion to the previous design proved necessary. This ability was
important in this particular use case as the overall design changed and
evolved over the course of the initial development period. GitHub as the
chosen hosting service, provided a central repository for storing backups of
the project code and was chosen for its ease of use and its ability to
integrate well with the Git tool.

IDEs
The development tools used for creating the actual code were chosen to
leverage their unique advantages for different applications. Visual Studio
Code (VSCode) was used as the primary tool for coding of the React

Native frontend application due to its wide range of extensions for React coding. The VSCode
integrated development environment provides a seamless environment for
JavaScript and React development, offering features like integrated React code
suggestions with IntelliSense and a rich environment of helpful extensions such
as debugging support from the extension React Native Tools [30]. On the
machine learning side, Anaconda paired with Jupyter notebooks were the IDE
of choice with their particular strengths in this area. Anaconda’s comprehensive
data science toolkit, coupled with Jupyter notebooks ability to visualize the

coding process allowing the easy exploration and iteration of the machine learning models. This
combination of tools suits the particular use case, optimized the
project’s workflow and offered a more efficient development and
design process.

Technical Difficulties

React-Native

Dependencies
The choice of using React Native for this project has caused many delays and technical
difficulties due to the complex dependency tree required for this project and the many libraries
which must be integrated together. An advantage of React Native is the wide array of
community support and libraries available for use but this does lead to many instances of
libraries which have conflicting peer dependencies. These conflicts can cause bugs and errors
which can be difficult to track and resolve. These conflicts are responsible for much wasted
time and effort as certain libraries have led to whole solutions which are attempted only to find
out later that they are incompatible with other libraries which are required to implement the
needed functionality.

Expo Camera
The Expo Camera library is being used to capture video images from the front or back camera
of the mobile platform. The use of this library was one technical obstacle for development in this
project.

1. First difficulty is that it is not compatible with Android emulators so development and
testing of code must be performed either on web platforms, through the Expo Go app or
by building a development build and running directly on a mobile device

2. Expo Camera library does not support frame processing or outputting images as tensors.
The first attempt to overcome this issue was to pass the image to the machine learning
algorithm encoding in Base64 format. However, Expo Camera only allowed images to be
captured in a number of defined aspect ratios so for an application with dynamic window
resizing this was not an ideal solution. The next solution was to utilize the react-native
tensor flow library which has an extension for Expo Camera called Tensor Camera which

is capable of capturing whole frames as Tensor arrays. This package however caused
many dependency errors to get working with the rest of the application.

3. Tensor Camera caused project delays to implement not just with dependency errors but
also with errors caused by not having the Tensor Flow model ready before requesting a
frame. This was solved by creating a function to ensure the model was ready before
allowing the Tensor Camera component to be rendered.

TensorFlowJS
The development of machine learning functionality with TensorFlow for React Native required
the use of TensorFlowJS. Any models which are developed in Python must be translated into
Javascript and loaded into the application using the TensorFlowJS library. This use of this library
leads to many dependency issues to get working, especially around implementing the correct
backend engine to run on a mobile device.

Face-Landmarks-Detection
The Face-Landmarks-Detection library is part of the Google Machine Learning kit and is the
newest version of their facial detection capabilities. The library is built on TensorFlow.Js and
returns an array of 486 annotated key points from faces detected from an input parameter which
can be in a number of different video,image or matrix array formats. This was the library that
was first envisioned as providing the facial landmarks detection but this library caused major
delays due to technical difficulties in implementation. The library works when the application is
run on a Web browser but when ported to Android, it causes module import errors which have
not yet been resolved. In the end, a switch to an older version called FaceMesh was required to
get the mobile application working correctly on Android.

Sequence Diagrams

CRUD Profile

Detect Driver Fatigue

Detect Driver Distraction

Detect Excessive Speed

UI Design

Navigation

Navigation Design
The chosen design scheme for the User Interface navigation centers around a simple and
intuitive Stack design. The Homepage will serve as a central hub from which all other pages will
seamlessly branch. This design philosophy seeks to prioritize simplicity to enhance usability,
aligning with the overarching goal of making the application easy to use and understand. By
adopting the Stack structure, the navigation is organized in a clear hierarchy, minimizing user
cognitive load especially for new users of the app. This streamlined design seeks to enhance
user engagement by making a navigation scheme which is as intuitive as possible. This design
decision was made with the hope that this scheme will maximize the usability and encourage
users to actually utilize the functionality which is of particular importance in this case due to the
overall enhanced driver safety that the application offers to Drivers.

Screenshots

HomeScreen

Monitoring Screen

Settings

References
1. Road Safety Authority (2023) Driver fatigue, RSA.ie. Available at:

https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue
(Accessed: 06 December 2023).

2. Babu, A. (2022) Detecting drowsiness in drivers using approaches based on machine ...,
Detecting Drowsiness in Drivers using Approaches based on Machine Learning

https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue

Methodologies. Available at: https://norma.ncirl.ie/6672/1/ashwinsureshbabu.pdf
(Accessed: 05 November 2023).

3. Civik, E. and Yuzgec, U. (2023) Real-time driver fatigue detection system with deep
learning on a low-cost embedded system, Microprocessors and Microsystems. Available
at: https://www.sciencedirect.com/science/article/abs/pii/S0141933123000972
(Accessed: 05 November 2023).

4. Phan, A. and Nguyen, N. (2021) (PDF) an efficient approach for detecting driver
drowsiness based on ... Available at:
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detect
ing_Driver_Drowsiness_Based_on_Deep_Learning (Accessed: 05 November 2023).

5. Google ML Kit (2023) ML Kit | google for developers, Google. Available at:
https://developers.google.com/ml-kit (Accessed: 06 December 2023).

6. Expo (2023) Facedetector, Expo Documentation. Available at:
https://docs.expo.dev/versions/latest/sdk/facedetector/ (Accessed: 06 December 2023).

7. Google ML Kit (2023a) Face mesh detection | ML kit | google for developers, Google.
Available at: https://developers.google.com/ml-kit/vision/face-mesh-detection (Accessed:
06 December 2023).

8. Google ML Kit (2023b) Face mesh detection concepts | ML kit | google for developers,
Google. Available at:
https://developers.google.com/ml-kit/vision/face-mesh-detection/concepts (Accessed: 06
December 2023).

9. Tramasso, L. (2020) Scholarship repository @ florida tech | Florida Institute of
Technology ... Available at:
https://repository.fit.edu/cgi/viewcontent.cgi?article=1768&context=etd (Accessed: 06
December 2023).

10. Jayarathne, J. (2021) Eye-blink detection, Medium. Available at:
https://jitharijayarathna.medium.com/eye-blink-detection-5d6854520217 (Accessed: 06
December 2023).

11. Dewi, C. et al. (2022) Adjusting eye aspect ratio for strong eye blink detection based on
facial landmarks, PeerJ. Computer science. Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044337/#ref-36 (Accessed: 06
December 2023).

12. Hassan, U. and Rahman, A. (2022) (PDF) automatic driver distraction detection using
deep ... - researchgate, Intelligent Systems with Applications. Available at:
https://www.researchgate.net/publication/359741824_Automatic_Driver_Distraction_Det
ection_using_Deep_Convolutional_Neural_Networks (Accessed: 06 December 2023).

13. Chudziak, M. (2023)@react-native-community/geolocation, React Native Community -
Geolocation. Available at:
https://www.npmjs.com/package/@react-native-community/geolocation (Accessed: 06
December 2023).

14. Abzianidze, G. (2023) Haversine formula in react native., Medium. Available at:
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda048438
88 (Accessed: 06 December 2023).

https://norma.ncirl.ie/6672/1/ashwinsureshbabu.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0141933123000972
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detecting_Driver_Drowsiness_Based_on_Deep_Learning
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detecting_Driver_Drowsiness_Based_on_Deep_Learning
https://developers.google.com/ml-kit
https://docs.expo.dev/versions/latest/sdk/facedetector/
https://developers.google.com/ml-kit/vision/face-mesh-detection
https://developers.google.com/ml-kit/vision/face-mesh-detection/concepts
https://repository.fit.edu/cgi/viewcontent.cgi?article=1768&context=etd
https://jitharijayarathna.medium.com/eye-blink-detection-5d6854520217
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044337/#ref-36
https://www.researchgate.net/publication/359741824_Automatic_Driver_Distraction_Detection_using_Deep_Convolutional_Neural_Networks
https://www.researchgate.net/publication/359741824_Automatic_Driver_Distraction_Detection_using_Deep_Convolutional_Neural_Networks
https://www.npmjs.com/package/@react-native-community/geolocation
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda04843888
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda04843888

15. Google Developers (2023) Roads API - Speed Limits, Google. Available at:
https://developers.google.com/maps/documentation/roads/speed-limits (Accessed: 06
December 2023).

16. Mishra, A., Jain, V. and Sharma, N. (2018) An analysis of convolutional neural networks
for Image Classification, Procedia Computer Science. Available at:
https://www.sciencedirect.com/science/article/pii/S1877050918309335?ref=pdf_downloa
d&fr=RR-2&rr=821871e5f85656e4 (Accessed: 05 November 2023).

17. Arafa, M. et al. (2021) (PDF) Image Classification based on CNN: A survey -
researchgate. Available at:
https://www.researchgate.net/publication/355800126_Image_Classification_Based_On_
CNN_A_Survey (Accessed: 05 November 2023).

18. Dharmaraj (2022) Image classification and prediction using transfer learning, Medium.
Available at:
https://medium.com/@draj0718/image-classification-and-prediction-using-transfer-learni
ng-3cf2c736589d (Accessed: 05 November 2023).

19. GeeksforGeeks (2022) Advantages and disadvantages of tensorflow, Advantages and
Disadvantages of TensorFlow. Available at:
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-tensorflow/
(Accessed: 05 November 2023).

20. Sharma, M. (2022) Advantages and disadvantages of tensorflow, Medium. Available at:
https://maheshjtp.medium.com/advantages-and-disadvantages-of-tensorflow-16e82af09
9 (Accessed: 05 November 2023).

21. Alajlan, N.N. and Ibrahim, D.M. (2023) DDD tinyml: A tinyml-based driver drowsiness
detection model using Deep Learning, MDPI. Available at:
https://www.mdpi.com/1424-8220/23/12/5696 (Accessed: 05 November 2023).

22. MathWorks (2023) Deep Network designer, MobileNet-v2 convolutional neural network -
MATLAB mobilenetv2 - MathWorks United Kingdom. Available at:
https://uk.mathworks.com/help/deeplearning/ref/mobilenetv2.html (Accessed: 05
November 2023).

23. Cherukuri, S. (2021)Why developers like opencv, StackShare. Available at:
https://stackshare.io/opencv (Accessed: 05 November 2023).

24. You, F. et al. (2019) A real-time driving drowsiness detection algorithm with ... - IEEE
xplore, A Real-time Driving Drowsiness Detection Algorithm With Individual Differences
Consideration. Available at: https://ieeexplore.ieee.org/abstract/document/8930504
(Accessed: 05 November 2023).

25. Qayyum, W., Ahmad, A. and Aljuhni, A. (2022) Evaluation of googlenet, Mobilenetv2,
and Inceptionv3, pre-trained ..., Evaluation of GoogLenet, Mobilenetv2, and Inceptionv3,
pre-trained convolutional neural networks for detection and classification of concrete
crack images. Available at:
https://www.researchgate.net/publication/359615441_Evaluation_of_GoogLenet_Mobile
netv2_and_Inceptionv3_pre-trained_convolutional_neural_networks_for_detection_and_
classification_of_concrete_crack_images (Accessed: 05 November 2023).

26. Fusek, R. (2021) MRL Eye Dataset, MRL. Available at: http://mrl.cs.vsb.cz/eyedataset
(Accessed: 05 November 2023).

https://developers.google.com/maps/documentation/roads/speed-limits
https://www.sciencedirect.com/science/article/pii/S1877050918309335?ref=pdf_download&fr=RR-2&rr=821871e5f85656e4
https://www.sciencedirect.com/science/article/pii/S1877050918309335?ref=pdf_download&fr=RR-2&rr=821871e5f85656e4
https://www.researchgate.net/publication/355800126_Image_Classification_Based_On_CNN_A_Survey
https://www.researchgate.net/publication/355800126_Image_Classification_Based_On_CNN_A_Survey
https://medium.com/@draj0718/image-classification-and-prediction-using-transfer-learning-3cf2c736589d
https://medium.com/@draj0718/image-classification-and-prediction-using-transfer-learning-3cf2c736589d
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-tensorflow/
https://maheshjtp.medium.com/advantages-and-disadvantages-of-tensorflow-16e82af099
https://maheshjtp.medium.com/advantages-and-disadvantages-of-tensorflow-16e82af099
https://www.mdpi.com/1424-8220/23/12/5696
https://uk.mathworks.com/help/deeplearning/ref/mobilenetv2.html
https://stackshare.io/opencv
https://ieeexplore.ieee.org/abstract/document/8930504
https://www.researchgate.net/publication/359615441_Evaluation_of_GoogLenet_Mobilenetv2_and_Inceptionv3_pre-trained_convolutional_neural_networks_for_detection_and_classification_of_concrete_crack_images
https://www.researchgate.net/publication/359615441_Evaluation_of_GoogLenet_Mobilenetv2_and_Inceptionv3_pre-trained_convolutional_neural_networks_for_detection_and_classification_of_concrete_crack_images
https://www.researchgate.net/publication/359615441_Evaluation_of_GoogLenet_Mobilenetv2_and_Inceptionv3_pre-trained_convolutional_neural_networks_for_detection_and_classification_of_concrete_crack_images
http://mrl.cs.vsb.cz/eyedataset

27. Keras Team (2015) Keras Documentation: Mobilenet, mobilenetv2, and MobileNetV3,
Keras. Available at: https://keras.io/api/applications/mobilenet/ (Accessed: 05 November
2023).

28. Technostacks (2023) Top 10 mobile app development frameworks in 2023:
Technostacks, Technostacks Infotech. Available at:
https://technostacks.com/blog/mobile-app-development-frameworks/ (Accessed: 05
November 2023).

29. Clark, J. (2022) Firebase Advantages and disadvantages, Back4App Blog. Available at:
https://blog.back4app.com/firebase-advantages-and-disadvantages/ (Accessed: 05
November 2023).

30. Microsoft (2023) React native tools - visual studio marketplace, Marketplace. Available
at: https://marketplace.visualstudio.com/items?itemName=msjsdiag.vscode-react-native
(Accessed: 08 December 2023).

31. Devtop (2022) Developing in react native, Devtop. Available at:
https://devtop.io/en/development-in-react-native/ (Accessed: 05 November 2023).

32. PngWing (2023) PNGWING - exclusive PNG Design images. Available at:
https://www.pngwing.com/en/free-png-hjxmr (Accessed: 05 November 2023).

33. PngEgg (2023) Firebase Database Mobile backend as a service push technology ... -
pngegg. Available at: https://www.pngegg.com/en/png-iulud (Accessed: 05 November
2023).

34. Wikipedia (2023) Tensorflow,Wikipedia. Available at:
https://en.wikipedia.org/wiki/TensorFlow (Accessed: 05 November 2023).

35. AssetSale (2023) MobileNet v2 - Realtime object classifier: Unity assetstore price down
information, アセットまとめ. Available at:
https://assetsale.herokuapp.com/en/contents/83910 (Accessed: 05 November 2023).

36. OpenCV (2020) Media kit, OpenCV - Media Kit. Available at:
https://opencv.org/resources/media-kit/ (Accessed: 05 November 2023).

37. PngFind (2019) Git’s Rebase Command is a common source of fear and - git source
control, HD PNG download(1920x660) - pngfind, PngFind.com. Available at:
https://www.pngfind.com/mpng/hTToJhT_gits-rebase-command-is-a-common-source-of/
(Accessed: 05 November 2023).

38. Icon Mafia (2022) Free github logo icon - download in flat style, IconScout. Available at:
https://iconscout.com/free-icon/github-169 (Accessed: 05 November 2023).

39. PngWing (2022) Free download | visual studio code, HD, logo, png | pngwing. Available
at: https://www.pngwing.com/en/free-png-aztoa/download (Accessed: 05 November
2023).

40. Studio, N. (2023) Millions of PNG images, backgrounds and vectors for free download,
Pngtree. Available at: https://www.pngegg.com/en/png-woqvp#google_vignette
(Accessed: 08 December 2023).

41. NoHat (2019) Free your browser bookmarks, free your disk space., Free: Siks/cbs
Datacamp Spark Tutorial Notebook - Jupyter Notebook Icon. Available at:
https://nohat.cc/f/siks-cbs-datacamp-spark-tutorial-notebook-jupyter-notebook-icon/m2H
7K9d3N4Z5i8G6-201907240851.html (Accessed: 08 December 2023).

https://keras.io/api/applications/mobilenet/
https://technostacks.com/blog/mobile-app-development-frameworks
https://blog.back4app.com/firebase-advantages-and-disadvantages/
https://marketplace.visualstudio.com/items?itemName=msjsdiag.vscode-react-native
https://devtop.io/en/development-in-react-native/
https://www.pngwing.com/en/free-png-hjxmr
https://www.pngegg.com/en/png-iulud
https://en.wikipedia.org/wiki/TensorFlow
https://assetsale.herokuapp.com/en/contents/83910
https://opencv.org/resources/media-kit/
https://www.pngfind.com/mpng/hTToJhT_gits-rebase-command-is-a-common-source-of/
https://iconscout.com/free-icon/github-169
https://www.pngwing.com/en/free-png-aztoa/download
https://www.pngegg.com/en/png-woqvp#google_vignette
https://nohat.cc/f/siks-cbs-datacamp-spark-tutorial-notebook-jupyter-notebook-icon/m2H7K9d3N4Z5i8G6-201907240851.html
https://nohat.cc/f/siks-cbs-datacamp-spark-tutorial-notebook-jupyter-notebook-icon/m2H7K9d3N4Z5i8G6-201907240851.html

