
SafeDrive AI
Project Report

Department of Computing

Bachelor of Science(Hons) in Software Development

Supervisor: Chris Meudec

Student Name: Shane Kennedy

Student Number: C00263504

Date: 2023/2024

Tables of Contents

Tables of Contents 2
Introduction 3
Project Description 3

Screenshots 4
Home Screen 4

Main screen 4
Permissions functionality 4

Setting Screen 5
Grant Permissions 5
Fatigue Monitoring Settings 5
Speed Monitoring Settings 5
Distraction Monitor Settings 6
Error Logging Settings 6

Monitoring Screen 7
Monitoring Screen 7
Dropdown Monitor Controls 7
Fatigue Monitor 7
Driver Fatigue Detection 8
Face Detection lost 8
Speed Monitor Active 8
Cancellable Alarm activation 8
Continuous Alarm activation 9
Driver Distraction Alarm activation 9

Metrics Screen 9
General Metrics 10
Fatigue Metrics 10
Speed Metrics 11
Distraction Metrics 11

Technologies Used 12
Other Technologies 13

Challenges 13
React Native 13

State Management 13
Package Selection 14
Build Errors 14

On-device Machine Learning 14
Speed Limit Detection 15

Learning Outcomes 15

2

Findings 15
MobileNetV2 16
Facial Landmarks Detection 17

Technical 19
React Native 19
Gradle/ Build Tools 19
Firebase 19
TensorFlow 19

Personal 19
Problem Solving 19
Persistence 20
Time Management 20
Adaptability and Flexibility 20

Project Requirement Fulfilment 21
Achieved 21
Not Achieved 21

Project Retrospective 21
Conclusion 23
Future Steps 23

Test Deployment 23
Functional 23
Technical 24

References 24
Declaration Form 27

Introduction
The goal of this report is to offer an overview of the development process used in the creation
of the SafeDrive mobile application. The document will illustrate the application developed by
demonstrating some of the functionalities with screenshots and give a synopsis of the
technologies used to create those functionalities. The document will then review some of the
challenges encountered and how they were solved as the application evolved to meet its
requirements. In the next section, the report will reflect on the learning outcomes gained and
review which of the original requirements were fulfilled and which were not. The final section will
examine the hypothetical question of what changes would be made in the development process
if starting the project from the start.

Project Description
The aim of this project was to develop a cross platform mobile application to increase the safety
of users while they are driving on the road. To this end, much of the start of the development

3

process was spent conducting research to pinpoint what contributing factors to road accidents
are and subsequently to consider which of these factors could be targeted with a technological
solution that would reduce the risk of that factor contributing to a road traffic accident [1,2]. This
question was extremely important as it was this research that would define the key
functionalities that the application must contain. Once these factors were defined the application
could work to implement solutions to reduce the risks presented by these factors and thereby
increase driver safety and package that functionality in a user-friendly mobile application. In the
end, the three contributory factors that were targeted were driver fatigue, driver distraction and
excessive speed.

Screenshots

Home Screen

Main screen

HomeScreen.js defines the main menu for the SafeDrive
application, serving as the home screen. This component also
serves as the main navigation hub for the application and is a
component of Stacker.js which is the container which handles all of
the navigation routes within the application. A stack navigation
scheme is used within the application to make navigation simple to

understand and utilise by drivers.

Permissions functionality

This screen also includes
functionality to verify any necessary
permissions needed. When a user
attempts to navigate to the Driver
Monitoring screen, the component
checks which monitoring options are
enabled in the application settings
and ensures the correct permissions have been granted before
allowing access to the screen. This is handled by the
handleCameraPress function when the "Driving Monitor" button
is pressed.

Stacker.js also initialises the connection to the firebase database
for anonymous error logging if the driver has that option enabled
in settings and passes it to the various screens for logging any
errors to the database. This functionality was included to
streamline debugging of errors to increase application
maintainability.

4

The return statement renders the UI components for the home screen, including a header with
the SafeDrive logo and text, and buttons for navigating to the "Driving Monitor" and "Settings"
screens.

Overall, HomeScreen.js serves as the entry point for the SafeDrive application, providing users
with access to the main features and functionalities.

Setting Screen
Settings.js serves as the configuration screen for the SafeDrive application, allowing users to
control permissions and customise various application settings. This component functionality
was designed to allow the driver to tailor the application’s function to their individual
preferences and give drivers complete control over which monitoring systems they wish to
utilise.

The screen is divided into sections for different settings categories, such as fatigue monitor
settings, speed monitor settings, distraction monitor settings, permissions settings, and logging
preferences. Each section contains relevant UI elements like checkboxes, sliders, radio buttons,
and pickers for user interaction.

Grant Permissions
Permission handling is a crucial aspect of the application’s
functionality with access to the device’s camera and/or location
needed depending on the monitors being used. Settings allows
users to grant all permissions needed with a single button press
to enhance usability. Alerts are displayed to inform users about
the status of permission grants.

Fatigue Monitoring Settings
The next section is the Fatigue
Monitoring settings. Within this
section users can control whether
the driver fatigue monitor is active,
the duration of driver fatigue
detection before an alarm is
triggered and the alarm sound that
should be played during a fatigue
alert.

Speed Monitoring Settings
The Speed Monitoring setting

follows with all the configuration options for the application’s speed
monitoring functionality. The first setting allows the drivers to

5

enable or disable speed monitoring and the next being the choice of alarm style. For excessive
speed alerts there are two types of alarm each with different types of alarm sounds:

1. Cancellable alarm: This alarm is simply a popup alarm that displays if the driver
exceeds the speed limit past the threshold values. This alarm stops sounding only when
the driver acknowledges the alarm by pressing the cancel button.

2. Continuous alarm: This alarm is a continuous
alarm which will continue sounding until the driver drops
back under the speed limit thresholds whereupon it cancels
itself automatically.

The next setting is Overspeed duration which controls how
long a driver must be over the speed limit threshold before
an alarm is activated. The driver can also set the Overspeed
amount threshold which controls how far over the speed
limit they must be before a speed alert is triggered. These
two settings were designed to prevent alarms from being
activated if a driver is briefly overtaking another vehicle for
example. This design decision was made to prevent
annoying drivers with unnecessary alerts which would
prompt them to stop using the
functionality.

The final setting is the alarm
tone that is activated during
speed alerts, the choice of

alarms available updates
automatically when a new Alarm

style is selected.

Distraction Monitor Settings
The next monitoring control section is
for the Distraction Monitoring
functionality. Within this section users
can control whether the driver
distraction monitor is active, the
duration of driver distraction detection
before an alarm is triggered and the
alarm sound that should be played
during a distraction alert.

Error Logging Settings
The final section is a checkbox which controls whether
anonymous error logging is active. When this control is set to

6

true, if an exception is raised within the application, an error log will be automatically uploaded
to firebase. This error log contains no personal data, just hardware device information and the
stack trace of the exception raised.

In brief, the Settings.js screen allows users to customise monitoring preferences to suit their
needs allowing them to customise and select only the monitoring functions that they wish to
utilise. It contributes to the application's functionality and user experience by providing a

comprehensive configuration interface.

Monitoring Screen

Monitoring Screen
The MonitorScreen.js component is the screen which delivers
the main functionality of the mobile application. Through this
screen the application allows drivers access to three different
monitors, each monitor targeting a contributory factor in road
traffic accidents; Driver fatigue, Excessive speed and Driver
distraction.

Dropdown Monitor Controls
The header contains a dropdown menu which allows drivers to
activate and deactivate the monitors dynamically during use
without having to navigate back to the Settings screen.
The Monitoring Screen is designed to be simple to use with only
two further buttons beyond the
dropdown controls. The first button is
the Start button which allows drivers
to activate and deactivate the
monitoring functions. The second
button is the Flip button which enables
drivers to choose between the front
and back camera for the video input.

Fatigue Monitor
The illustration in Figure 9 shows an
example where the driver has started
the fatigue monitoring system. Once
active, the system will detect any
faces in the image and overlay a box
around the face to indicate to the
driver that the system is working. The
monitor will also overlay boxes around
the driver’s eyes that will be green if

7

the eyes are detected as open and red if they are detected as closed.

Driver Fatigue Detection
Figure 10 is a sample screenshot of a driver fatigue event detection.
The application has detected that the driver’s eyes have been closed for
more than the specified threshold and activated an alarm.

Face Detection lost
Figure 13 is illustrating another function of the driver fatigue system. If
the application cannot detect a face within the video frame, it will
activate a face detection loss alarm. This was implemented as a safety
function to alert drivers that the monitoring system is not functional due
to loss of face detection.

Speed Monitor Active
The image in Figure 12 illustrates the
functionality of the Speed monitoring
system Once activated, the application will generate two speed
indicators, one for the current speed of the driver and another
showing the speed limit detected for the current road section that
the driver is traversing. These indicators will be green when
below the speed limit and turn red if the
driver exceeds the speed limit to give a
visual warning that the speed limit has
been exceeded.

Cancellable Alarm activation
If the driver has selected the cancellable
alarm option and the speed limit is
exceeded past the threshold values in
settings, the application will activate an
alarm that will sound until the driver
acknowledges the alarm by pressing

cancel on the alert. The driver can set the threshold value which
controls how many seconds they may be over the speed limit before the
alarm activates. The driver may also choose the sound that will play
when the alarm is activated. This functionality was included to enable
the application to have different alarm sounds depending on the type of
alarm activated.

8

Continuous Alarm activation
If the driver has selected the continuous alarm option and the
speed limit is exceeded past the threshold values in settings,
the application will activate an alarm that will sound until the
driver drops below the speed limit, once which it will cancel
itself automatically.

Driver Distraction Alarm activation
Figure 15 gives an
illustration of the driver
distraction alarm
activation. This function
operates by taking the
average head position in
both roll (up and down
movements) and yaw
(side to side movements)
over the first thirty
seconds of monitor
activation. These
averages are then taken
as the probable correct
head driving position that
the driver utilises. Once calibrated, the monitor will then
sound an alarm if the driver's head moves in either roll or
yaw beyond the set threshold. This monitor is designed to
alert the driver if they look away from the road, for example,
looking down at their lap or to either side.

Metrics Screen
The metrics screen is designed to allow the driver to visualise and reflect on their overall driving
performance and safety. The application collects the data for these calculations and
visualisations any time the application monitor is activated and then collates and displays these
key performance indicators when the metrics screen is opened . The metrics screen is divided
into four sub-screens that the driver can switch between each focusing on a separate set of
metrics, General Metrics, Fatigue Metrics, Speed Metrics and Distraction Metrics. The
application also calculates a driver score between 0 and 1000 for Fatigue performance, Speed
Performance and Distraction performance to give the driver an idea of their driving safety
related to these factors. These three scores are combined on the General Metrics screen to give
the driver an overall safety score and a corresponded grade between A and F.

9

General Metrics
The General Metrics screen displays the overall driver score and a number of other calculated
values relating to overall journey statistics such as number of trips, average trips time, average
speed etc. The screen also contains visualisations relating to trip and alarm history.

Fatigue Metrics
Fatigue Metrics is the screen that gives the driver an overview of all trips where the Driver
fatigue monitor was active . The screen displays the driver score for fatigue safety which is a
value between 0 and 1000. Points are deducted from the score based on the average number
of fatigue alarms per trip and the percentage of trips where a fatigue alarm occurred. The
screen displays a number of calculated metrics on fatigue performance and also contains
visualisations to illustrate some of the key performance indicators.

10

Speed Metrics
The Speed Metrics screen presents the driver with an overview of all trips where the Speed
monitor was active. The screen displays the driver score for speed safety which is a value
between 0 and 1000. Points are deducted from the score based on the average number of
speed alarms per trip and the percentage of time of all trips where the driver was exceeding the
speed limit. The screen displays a number of calculated metrics on speed performance and also
contains visualisations to illustrate some of the key performance indicators.

Distraction Metrics
The Distraction Metrics screen follows the format of the previous metrics screen but displays the
metrics for trips where the Distraction monitor was active . The screen displays the driver score
for distraction safety which is a value between 0 and 1000. Points are deducted from the score
based on the average number of distraction alarms per trip and the percentage of time of all
trips where a distraction alarm occurred. The screen displays the calculated metrics on

11

distraction performance and also visualisations to illustrate some of the key performance
indicators.

Technologies Used

The front end of the application was developed using React Native, a popular framework for
building mobile applications using JavaScript and React. React Native was chosen based on its
suitability for fulfilling this project's particular requirements. React Native allows developers to
build cross-platform mobile applications that can run on both iOS and Android using a single
codebase [3]. For this project, this capability significantly reduced the development time and
effort of creating a cross-platform application. React Native also provides a rich eco-system of
third party libraries which proved essential in implementing some of the more advanced
functionality such as the real-time processing of imagery for driver fatigue and distraction
detection on a mobile device.

React Native follows a component-based architecture where UI and functional elements are
built using reusable components. These components can accept parameters (props) which can
be used to customise their behaviour and appearance. This approach again reduced
development time by allowing for code reuse across the application while also offering simplified
maintenance and enhancing scalability as these modular and self-contained components can
be created and then reused in any future expansions of the application. Furthermore, React
Native renders these components dynamically based on the props passed and application state
which enables the creation of adaptable UIs that can change during runtime as the application
state evolves.

The Expo framework was used for the building of the React Native application. This framework
is a library and platform designed to abstract some of the complexities of building React Native
applications [4]. The Expo CLI offers a number of tools and services that simplify the
development process. This framework enables a managed workflow which can handle the
configuration of some dependencies automatically and its development servers allow hot
refreshes of code during development without having to stop and restart the application when
changes are made. This technology brought significant benefits to the project including
streamlined building and deploying of the application.

Firebase was utilised as an Infrastructure-as-a-Service (IaaS) database for the anonymous
logging of errors within the application. By integrating Firebase as a backend database, the
project was able to leverage its real-time database capabilities to efficiently store and manage
error logs for any application errors generated by users [5]. This implementation was developed
to enhance future maintainability through the creation of a monitoring and debugging process
enabling developers to quickly identify and address any issues or bugs encountered by the
application’s users.

The machine learning technology employed for the detection of driver fatigue and distraction
was the Google Machine Learning(ML) kit integrated into the Expo Face-Detector library [6].
This library was chosen due to its capability of providing fast real-time performance on mobile

12

devices, ensuring efficient monitoring of drivers for signs of fatigue and distraction. Python and
TensorFlow were utilised for developing a custom driver fatigue detection model which was
used to compare and contrast its performance versus the Google ML Kits performance.
Additionally, MediaPipe’s Facial Landmark detection model was used to experiment with an
alternate approach to driver fatigue detection for a comparison of detection methodologies [7].
These technologies allowed experimentation with various machine learning techniques to refine
the methodology used to achieve optimal performance in the detection of fatigue and distraction
given the limited resources available on mobile devices.

Other Technologies
- GitHub - The Git version control system was used for tracking and merging project

changes. GitHub serves as the online datastore for backup of project files.
- VSCode - VSCode was utilised as the primary IDE for the development of the source

code of the main application.
- Anaconda - Anaconda and Jupyter notebooks were used for creation of the machine

learning model which were created as part of the development process.

Challenges
There were many challenges encountered over the development process of this application
which necessitated continuous learning and persistence to overcome. The task was made more
difficult due to my personal lack of experience with the majority of the technologies needed to
complete the application’s functionalities. The complexities of the project combined with this lack
of experience meant many deadends were encountered where work completed could not be
integrated into the project and had to be discarded necessitating new pathways and solutions to
be found to overcome these roadblocks.

React Native
As the frontend architecture of the project React Native was one of the key technologies of the
project. While it is a powerful framework for developing dynamic mobile applications, many
challenges and issues arose due to the decision to use this framework, especially given my lack
of experience with the framework and its architecture.

State Management
Transitioning to using React Native took several months in learning the basics especially around
the state management system the framework uses. The lack of the ability to simply use global
variables for dynamic components means that state must be utilised for the passing of any
shared variable and while the use of state allows components to be modular and dynamically
rendered, initially I found that many errors were caused simply by misunderstanding how the
application’s state was being tracked. Additionally, these errors were often hard to debug given
the lack of simple debugging tools that allow visibility over the evolution of state during runtime.

13

This challenge was overcome by slowly learning how state management works and finding
better methods of debugging problems such as using development builds and integrating react
devtools to better track the evolution of states [8].

Package Selection
Navigating the vast array of third-party packages and libraries available for React Native proved
to be another challenge for this project. Many packages are poorly maintained with little
documentation and are very prone to causing integration issues with other packages within the
application. Many deadends were caused by attempting to integrate packages which would at
first seem to work in one context such as on emulator or on web but would then cause build
errors when migrated to Android. This challenge was overcome by experimentation with
different combinations of packages until a variation of packages was found which produced the
desired functionality while maintaining application stability.

Build Errors
Understanding how the build process worked when deploying a React Native codebase to a
mobile build was another roadblock in the development process. Many packages have special
requirements and configuration of gradle build settings before building which will cause build
errors if not correctly completed. These build errors proved difficult to debug due to often
confusing error messages and little online documentation as errors are often specific to the
project’s unique configuration. This challenge was overcome through better understanding of
how building configuration is handled within the React Native Expo framework, in particular the
use of plugins to customise the build configuration and the different approaches needed for
managed workflow deployment when utilising the Expo CLI.

On-device Machine Learning
This project’s requirements for real-time on-device machine learning to process and monitor for
driver fatigue and distraction presented a significant challenge. Initially, the plan was to develop
a custom machine learning model capable of monitoring camera input to detect these events.
However, a major roadblock was encountered due to the performance limitations inherent in the
way React Native operates. React Native, while offering advantages in cross-platform
development, operates by translating JavaScript code into native code. While this approach
facilitates rapid development, it can lead to performance issues, especially when dealing with
computationally intensive tasks such as image processing and machine learning [9].

In the first development attempts, the process of translating camera inputs into images suitable
to be processed by a machine learning model introduced significant performance overhead
meaning real-time processing of multiple frames per second was not possible. Many solutions to
this problem were attempted such as writing a native code plugin that would perform the
processing in native code and send the results across the React Native bridge, but these efforts
proved to be a failure causing build errors which could not be resolved due to developer
inexperience with the framework. Ultimately, this problem was solved by utilising a pre-trained

14

machine learning model from the Google ML kit which performs its processing in native-code
and thereby can achieve the required functionality without compromising performance or
responsiveness.

Speed Limit Detection
The real-time detection of speed limits on the section of road that a driver is currently travelling
offered another challenge to the project. The initial approach relied on the Google Speed Limits
API, however, after some development work in this direction, it was discovered that access to
this functionality is restricted to Enterprise customers. To overcome this limitation, an alternate
solution was found by leveraging the OpenMaps API [10].

This change in direction introduced an alternate challenge to overcome as, unlike Google
Speed Limits, the OpenMaps API lacks inbuilt functionality for snapping to the closest road
section. Instead, its functionality is limited to only providing a number of road nodes in a certain
radius of the input geographical position. This limitation was subsequently overcome through
the creation of a function that used the Haversine formula to calculate the distances from the
driver to every node returned and ultimately return the node which is closest to the driver’s
current location [11]. Despite this limitation, this meant that the speed limit at that node location
could then be found. This solution overcame these issues and meant that in the end, the
application could effectively determine the current speed limit and handle road section detection.

Learning Outcomes

Findings

The detection of driver drowsiness or fatigue was one of the keystone requirements in the
development of this mobile application from the inception of the project. This was due to the fact
that driver fatigue is one of the leading contributing factors in road traffic accidents around the
world according to the Road Safety Authority of Ireland (RSA) [12]. As the project’s aim is to
increase driver safety, this ability of this application to detect and prevent such fatigue driven
accidents is one of its primary value propositions for the application’s potential user base.

Due to the importance of this functionality, much time and effort was spent during this project in
experimentation of different methodologies for the detection of driver fatigue. Drawing on
previous research on the use of machine learning in recent years in the design of the
drowsiness detection system, the primary metric to determine if a driver is fatigued chosen for
this project is through blink detection [13]. The other possible metric of yawning that previous
research papers on this topic considered was discounted due to the personal variations in
different individuals in yawning behaviour although the additional detection of yawning is a
functionality which the project would have included if time permitted [14].

15

With the metric chosen, the project then developed and evaluated three separate approaches to
enable blink detection functionality. All three approaches utilised convolutional neural networks
to determine if the driver’s eyes were open or closed which the application could then time to
determine a blink event and its duration. The choice to use a convolutional neural network was
made based on previous research undertaken which showed that it has become possible in
recent years to achieve high accuracy in blink detection using this method even on devices with
limited resources [15]. The three approaches evaluated for this project were a custom
Convolutional Neural Network based on the MobileNetV2 architecture [16], a prebuilt library
Expo Face-Detector based on the GoogleMLKit mobile machine learning architecture [6] and
finally an approach which used another variation of Google’s machine learning technologies, the
MediaPipe Facial Landmarks Detection architecture [7].

MobileNetV2

The methodology used in this particular approach was to firstly use transfer learning in the
development of a Convolutional Neural Network utilising cropped images of eyes as the training
data for the model. The model was designed as a binary classifier with the two classes being
open eyes or closed eyes. As such, the training data was split into two labelled folders, one for
each class. As the model was trained on cropped images of eyes, to use it with live video the
next step was to leverage the Expo Face-Detector library to process the live video, detect the
presence of a face and the corresponding boundary coordinates of the eyes of that face. These
boundaries could then be used to crop the image around the eyes and return two cropped
images, one from each eye. These images could then be fed into the trained model which would
return a prediction for each eye to determine if they were open or closed.

The MobileNetV2 machine learning architecture was selected as the basis of the model which
would be trained via transfer learning due to its high suitability for real-time computer vision
tasks on mobile platforms. The architecture offers a pretrained model that has 53 layers and
contains a model pre-trained on more than one million images [16]. The model was adjusted to
this project’s requirements by creating a layer with one node and setting it as the output layer of
the mode. This layer was created with sigmoid as its activation function to suit the binary
classification requirement with the model returning a probability between 0 and 1 with prediction
less than 0.5 indicating one class and above 0.5 the second class. The model was trained for
20 epochs on a dataset which combined two open-source datasets of eye images, the MRL
dataset containing 84,898 images and the Closed Eyes in the Wild (CEW) dataset containing
2,425 images [17,18].

Table 1. MobileNetV2 Model Performance

Accuracy Precision Recall F1-Score

.96 .96 .96 .96
Figure 20. Table showing the MobileNetV2 model’s performance with classifying eyes open/closed.

16

The size of this dataset created challenges in the amount of resources required to train this
model with the first attempts on local hardware failing due to lack of system memory. This
challenge was overcome by utilising Google Collab which allowed the model to be trained by
using a high-ram runtime [19].

The eventual model performance achieved shows how effective CNNs can be at performing
blink detection with an overall accuracy of 96% with a training time of twenty epochs. False
Positives and False Negatives were low with both Precision and Recall scores set at 96% also.

Facial Landmarks Detection

To fully explore the optimal approach to blink detection, another
methodology for blink detection was tested which uses a different
mechanism to determine if an image of a face has eyes open or closed.
For this approach, the Google ML library Facial Landmarks Detection is
utilised to detect a face from the video input. This library developed by
Google utilises a CNN powered by MobileNetV2 as the backend model
architecture to detect any faces in the image and return 486 points
around each face detected.

The model returns an object with a facial bounding box defined as x,y and z coordinates and the
array of the key points in form x,y,z from which the key points corresponding to the left and right
eye can be extracted. These points are then used to calculate the Eye Aspect Ratio (EAR)
which is used to predict if an eye is in an open or closed state.

The EAR ratio is a scalar which will
change in real time as the aspect ratio
of a subject's eye fluctuates allowing
the detection of whether an eye is in
an open or closed state. This value
can be calculated from the points with
the following formula as discussed in
the design document [20].

EAR = (|| p2 - p6 || + || p3 - p5 ||) / (2
* (|| p1 - p4||))

Once this approach was
implemented, the model was evaluated using the Closed Eyes in the Wild (CEW) dataset to
determine performance. One of the key hyperparameters associated with this detection
mechanism is the threshold EAR value which distinguishes between open and closed classes.
Previous research conducted prior to development suggested 0.3 as a possible starting point so
this was the initial value tested [21].

17

Once the model was developed however, testing found that this value was not the optimal figure
for best classification performance. The results obtained shown in Table 2 instead found the
optimal value for this implementation to be between 0.1 and 0.2.

An EAR threshold of 0.15 returned the best accuracy of any of the values tested with an
accuracy of 95% over the images dataset. The next closest threshold was 0.1 with an accuracy
of 93%, however further analysis of these results is needed to also minimise false negatives.

As this application is dealing with human safety, reducing the occurrence of false negatives is
arguably more important than small differences in accuracy as if the model predicts open while
a driver’s eyes are actually closed, that is a much greater problem than the model generating a
false alarm. While this may be annoying to a driver, it is not causing a potential safety issue.
Given this requirement, the value of 0.15 was found to be the optimal value returning the
highest accuracy and lowest overall occurrence of false negatives.

18

Table 2. EAR Model Performance

EAR Threshold Accuracy Precision Recall F1-Score

0.05 .78 .85 .77 .77

0.1 .93 .93 .93 .93

0.15 .95 .95 .95 .95

0.2 .91 .92 .91 .91

0.3 .66 .80 .67 .63

Technical

React Native

As the key technology utilised in this project, the largest technical learning was around the use
of the React Native framework. Through the course of the project, I slowly developed a deeper
understanding of the framework and its fundamental concepts around components, props and
particularly the subtleties of state management. This was my first experience with a functional
programming approach where components are written as functions and ideally input data is
immutable with global effects being handled through the use of state and functions such as
useState. I also gained experience with the development of user-friendly User Interfaces and
how React Native can be used to develop modular and dynamic User Interface elements.

Gradle/ Build Tools
A significant aspect of the project involved understanding Gradle and other build tools for the
compilation and packaging of React Native mobile applications using the Expo framework. This
involved how to configure build settings, the management of dependencies and ensuring
compatibility with various Android SDK versions.

Firebase
Incorporating Firebase into the application provided my first experience with the technology and
was a valuable learning experience in NoSQL databases and cloud technologies.

TensorFlow

Although the attempts of integrating the model into a React Native mobile application proved to
be failures, this project still allowed me to explore TensorFlow for the tasks of facial detection.
This project was my first experience with the use of Transfer learning to speed model
development and I gained valuable insights into how to configure and develop models using
Convolutional Neural Networks.

Personal

Problem Solving
Throughout the project, there were many challenges to be overcome that required adopting a
problem solving mindset with each obstacle encountered always needing a new approach to be
considered. Often, these new approaches would introduce new challenges that had to be
resolved. At the outset of the project, I made many mistakes where I would jump on the first
solution that I could think of without considering all approaches which ultimately led to me
wasting a lot of time on the non-optimal solution to an issue. This project taught me to take a

19

more considered approach to problem solving and consider each solution and the problems it is
likely to introduce instead of just jumping to coding immediately.

Persistence
Another personal learning from the project was the importance of persistence when faced with
an obstacle. During the development process there were many unforeseen roadblocks which
often meant that work that I had spent a lot of time creating had to be thrown away and new
approaches taken. This was often very discouraging but this process did teach me that even
problems that seem insurmountable can be solved through perseverance and determination in
the face of setbacks.

Time Management
Time Management is another skill that was crucial in juggling this project's deadlines with the
various work and projects of other modules of the course. I adopted a calendar system where
each deadline was marked with an accompanying percentage of work remaining. This approach
worked for me allowing me to better manage which project I would next focus on based on the
amount of work remaining versus the time remaining until the particular deadline. Once I started
using this system, I found this allowed me to better manage my time and ensure that each
project was completed in time for each deadline.

Adaptability and Flexibility
While I have some experience with the development of projects using the agile process, this
was my first foray into a large individual project developed from the ground up utilising an agile
methodology. Given the many unknowns and new technologies required to bring the project
from conception to the current state, the agile methodology of embracing change and remaining
flexible proved to be an invaluable tool but it would be a lie to say that an agile mindset always
came easily to me and I made many mistakes along the journey.

One challenge that I had not anticipated when executing an agile project was how difficult it was
to overcome the instinct to look past the central functionalities and begin to focus too much on
what the finished completed project should look like. Particularly at the start of the project, I
often deviated from the Agile methodology of focusing on the present and allowing the project
requirements to evolve from the work in the current iteration. This was probably a factor in some
of the deadends I wasted time working on as some of these setbacks were based around
advanced functions I was envisioning for the final product instead of focusing my efforts on
getting the central functionality needed for the current iteration working first and allowing the
future shape of the project to evolve from the experience and feedback gained from the
completion and testing of the current iteration.

This experience has underscored a valuable lesson, establishing a robust foundation centred on
a project's core features in the early stages enables each subsequent iteration to build upon the
insights gained. Focusing too much on future functionalities can lead to wasted time, as these
efforts might head in the wrong direction initially. This approach reinforces the importance of

20

grounding each phase in the lessons of the previous ones to ensure continuous, directed
progress.

The many deadends encountered instead necessitated adopting a flexible approach where I
focus on the current iteration enabling me to remain flexible and not be wed to my first idea of
what the final product should look like. This taught me that there is no one optimal solution to
any problem and to adopt what works instead of your first idea.

Project Requirement Ful�lment

Achieved

● Face Detection
● Alarm for loss of Face Detection
● Driver Fatigue Detection
● Alarm for Driver Fatigue Detection
● Excessive Speed Detection
● Alarm for Excessive Speed Detection
● Multiple Alarm Types for Speed Alarms
● Permissions Management
● Light Sensor to disable Fatigue Monitoring in low light conditions
● Persistent User Settings
● Driver Distraction Detection

Not Achieved

● Separate Driver Profiles
● Addition of yawn monitoring to Driver Fatigue Detection
● Sunglasses Detection
● Gaze Estimation Model

Project Retrospective
The start of this project was delayed by a personal injury which resulted in the loss of around
one month at the start of the development process. Given that the project was thus delayed,
one change I would make is to adapt the development process earlier with a revised project
plan which accounted for this time loss as I jumped into the project without accounting for the
time loss which led to an unrealistic expectation of what could be achieved in Iteration One. This
misstep meant a lot of the work for Iteration One being rushed with no grounded project plan
guiding the development. In later Iterations, I made sure to have a rough project plan to follow
which led to more measured progress in later Iterations.

21

Another change I would make for this project is that I would not use React Native as the
framework. Although React Native is a powerful framework for cross-platform development, its
use caused much more problems than I had foreseen in implementing the machine learning
aspects of the project. The decision to develop a cross-platform application guided the decision
to pick React Native but given the many unknowns at the outset of the project, the complexities
this decision introduced proved it to be a mistake. Instead, I would consider simply using a
native coding language such as Kotlin and develop the application for Android only initially
which would eliminate all the issues that were caused in developing and packaging the
application from React Native to Android. Many of the major deadends I encountered involved
the building of versions which would work on web during build and testing and then fail during
building for mobile applications due to various issues such as package incompatibilities in
certain contexts, package conflicts and Android SDK compatibilities. I was unable to test and
build iOS versions of the application due to not having access to a Mac computer so the
cross-platform version of the application was never achieved anyway [22].

As mentioned earlier in the document, another major mistake that I made during this project was
working on versions and functionality which ultimately did not work out and ended up in the
Scrap folder on my computer. I wasted weeks after Christmas trying to switch to a different
camera library which was capable of outputting the images as Tensor arrays which could be
input directly into a custom model. Ultimately, while I managed to get this working as a camera
and outputting Tensors as required, this version had a build issue where it would not build when
integrating into the application as developed so far due to package version conflicts. Again I
wasted the first few weeks of the final iteration again trying another approach using React
Native Vision Camera which would work as a camera but would not build when the Face
Detection was implemented due to build issues around the CMake translation of the C++ code
within the Face Detection library. If React Native is to be used and I started this project from
scratch, I would not rely so heavily on third-party libraries but instead create my own plugin with
the exact project requirements and dependencies in mind so these build issues would not be a
problem and I could be assured it would work as intended. Unfortunately I only gained the
knowledge to create my own library late in the process but if starting over this would definitely
be the approach I would take. I would also pivot more quickly when a particular solution is
introducing more problems than it is solving and not waste so much time on what ultimately
turned out to be a complete deadend.

While there is a balance to be maintained while working on Agile projects between how much
research and planning is done before starting to code, for this project, I think I often jumped to
coding somewhat sooner than I should. Agile recommends allowing the project requirements to
evolve from the lessons learned in coding and getting feedback on previous iterations but if you
are jumping to coding before taking the time to actually reflect on the successes and failures in
that previous iteration, you are missing a vital piece of the Agile process. This is related to the
problem of too much time wasted on solutions which ultimately did not work as many of the
issues were ones that could have been foreseen if I had more thoroughly considered the
solution picked before starting to code. I would adopt this philosophy if restarting the project
from scratch and spend much more time using Agile tools like retrospectives and iteration

22

planning to evolve the course of the next iteration rather than rushing to implement the first
possible solution that I conceived.

Conclusion
Despite encountering numerous obstacles, making many missteps and facing several deadends
over the course of this development journey, the project did manage to deliver the core
functionalities of the application despite all the setbacks. The form and implementation of those
functionalities were often very different from my initial ideas which illustrated to me the value of
remaining flexible when faced with problems and not to be afraid to change approaches when
faced with roadblocks.

The process of completing this project from a start point of complete inexperience in the
necessary technologies presented endless learning opportunities and the process taught me so
much about the difficulties of developing mobile applications and delivering machine learning
functions on platforms with limited resources.

I believe that if I was asked to create another mobile application today, I would be capable of
planning, documenting and implementing that application in a much more efficient and effective
manner. This belief is based on the amount of development in skills that this project has enabled
including technical skills, ability to effectively plan projects and personal understanding of what it
takes to smoothly manage the process of achieving a successful Agile project.

Future Steps
For any future development efforts going forward, there are still many improvements that could
be made to current functionalities and additional functionalities that could be introduced to
enhance the overall product.

Test Deployment
The immediate next steps for this project if it was to continue would be the Initiation of a beta
test on the Google Play store. This is an essential next step to gather valuable user feedback to
ensure the app's functionality meets the expectations and needs of the target audience. This
phase will allow real-world testing with a large group of users of the application’s features
allowing the final streamlining and finetuning of the application’s functionality before the initiation
of a full release.

Functional
From a functionalities viewpoint, the next steps for the application would be around improving
the reliability and function of the three main monitoring systems.

23

● For fatigue detection introducing additional indicators such as yawning or frequency of
blinking could be used to improve overall accuracy of detection.

● With the driver distraction detection functionality, the inclusion of a model capable of
gaze estimation has the potential to significantly increase its ability to detect other
potential driver distraction indicators.

● Another possible feature would be the ability to detect if a driver is wearing sunglasses
so a warning could be issued and monitor deactivated due to the difficulty of determining
eyes being open/closed in this environment.

● The addition of a capability of the application connecting to external cameras with night
vision functionality to enhance monitoring functions in low light conditions.

Technical
On the technical side, one major improvement that would be planned for future iterations is
switching the camera input and face detection functionality to utilise the
React-Native-Vision-Camera library [23]. This library has the potential to introduce many
benefits to the application including better performance, extended support as Expo Camera is
being deprecated in future Expo SDK versions and better support for background processing of
images. This integration had in fact been mostly complete but was excluded from this final
release due to time constraints and instead saved as a future version in the project repository
under future technology so another few weeks could see this function easily integrated into a
future release.

References
1. International Transport Forum (2021) Ireland: Road Safety Country Profile, 2021 -

international transport forum. Available at:
https://www.itf-oecd.org/sites/default/files/ireland-road-safety.pdf.

2. Road Safety Authority Ireland (2023) Driver fatigue, RSA.ie. Available at:
https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue
(Accessed: 05 November 2023).

3. Technostacks (2023) Top 10 mobile app development frameworks in 2023:
Technostacks, Technostacks Infotech. Available at:
https://technostacks.com/blog/mobile-app-development-frameworks/ (Accessed: 05
November 2023).

4. Pregasen, M. and Team, R. (2023) Putting the expo vs react native debate to rest,
Retool. Available at: https://retool.com/blog/expo-cli-vs-react-native-cli (Accessed: 18
April 2024).

5. Clark, J. (2022) Firebase Advantages and disadvantages, Back4App Blog. Available at:
https://blog.back4app.com/firebase-advantages-and-disadvantages/ (Accessed: 05
November 2023).

6. Expo (2023) Facedetector, Expo Documentation. Available at:
https://docs.expo.dev/versions/latest/sdk/facedetector/ (Accessed: 06 December 2023).

24

https://www.itf-oecd.org/sites/default/files/ireland-road-safety.pdf
https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue
https://technostacks.com/blog/mobile-app-development-frameworks
https://retool.com/blog/expo-cli-vs-react-native-cli
https://blog.back4app.com/firebase-advantages-and-disadvantages/
https://docs.expo.dev/versions/latest/sdk/facedetector/

7. MediaPipe (2024) Face landmark detection guide | mediapipe | google for developers,
Google. Available at:
https://developers.google.com/mediapipe/solutions/vision/face_landmarker (Accessed:
18 April 2024).

8. React.dev (2024) React developer tools, React. Available at:
https://react.dev/learn/react-developer-tools (Accessed: 18 April 2024).

9. Boschi, M. (2021) React native - when JS is too busy, DEV Community. Available at:
https://dev.to/matteoboschi/react-native-when-js-is-too-busy-5fhn (Accessed: 18 April
2024).

10. OpenStreetMaps (2022) API, API - OpenStreetMap Wiki. Available at:
https://wiki.openstreetmap.org/wiki/API (Accessed: 18 April 2024).

11. Abzianidze, G. (2023) Haversine formula in react native., Medium. Available at:
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda048438
88 (Accessed: 06 December 2023).

12. Road Safety Authority (2023) Driver fatigue, RSA.ie. Available at:
https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue
(Accessed: 06 December 2023).

13. Babu, A. (2022) Detecting drowsiness in drivers using approaches based on machine ...,
Detecting Drowsiness in Drivers using Approaches based on Machine Learning
Methodologies. Available at: https://norma.ncirl.ie/6672/1/ashwinsureshbabu.pdf
(Accessed: 05 November 2023).

14. Civik, E. and Yuzgec, U. (2023) Real-time driver fatigue detection system with deep
learning on a low-cost embedded system, Microprocessors and Microsystems. Available
at: https://www.sciencedirect.com/science/article/abs/pii/S0141933123000972
(Accessed: 05 November 2023).

15. Phan, A. and Nguyen, N. (2021) (PDF) an efficient approach for detecting driver
drowsiness based on ... Available at:
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detect
ing_Driver_Drowsiness_Based_on_Deep_Learning (Accessed: 05 November 2023).

16. MathWorks (2024) ImagePretrainedNetwork, (Not recommended) MobileNet-v2
convolutional neural network - MATLAB. Available at:
https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html (Accessed: 18 April
2024).

17. Fusek, R. (2021) MRL Eye Dataset, MRL. Available at: http://mrl.cs.vsb.cz/eyedataset
(Accessed: 05 November 2023).

18. Tan (2014) Closed eyes in the wild (CEW), The Closed Eyes in the Wild (CEW) dataset.
Available at:
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDat
abases.html (Accessed: 18 April 2024).

19. Google Collab (2024) Google colaboratory, Google Colab. Available at:
https://colab.research.google.com/notebooks/pro.ipynb#scrollTo=23TOba33L4qf
(Accessed: 18 April 2024).

25

https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://react.dev/learn/react-developer-tools
https://dev.to/matteoboschi/react-native-when-js-is-too-busy-5fhn
https://wiki.openstreetmap.org/wiki/API
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda04843888
https://medium.com/@gega.abzianidze.1/haversine-formula-in-react-native-abda04843888
https://www.rsa.ie/news-events/events/details/2023/01/30/default-calendar/driver-fatigue
https://norma.ncirl.ie/6672/1/ashwinsureshbabu.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0141933123000972
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detecting_Driver_Drowsiness_Based_on_Deep_Learning
https://www.researchgate.net/publication/354550914_An_Efficient_Approach_for_Detecting_Driver_Drowsiness_Based_on_Deep_Learning
https://www.mathworks.com/help/deeplearning/ref/mobilenetv2.html
http://mrl.cs.vsb.cz/eyedataset
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html

20. Jayarathne, J. (2021) Eye-blink detection, Medium. Available at:
https://jitharijayarathna.medium.com/eye-blink-detection-5d6854520217 (Accessed: 06
December 2023).

21. Dewi, C. et al. (2022) Adjusting eye aspect ratio for strong eye blink detection based on
facial landmarks, PeerJ. Computer science. Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044337/#ref-36 (Accessed: 06
December 2023).

22. Singh, S. (2023) Connecting a real IOS device to Xcode for react native development: A
step-by-step guide, Medium. Available at:
https://sugandsingh5566.medium.com/connecting-a-real-ios-device-to-xcode-for-react-n
ative-development-a-step-by-step-guide-c0e3817a1893 (Accessed: 19 April 2024).

23. Rousavy, M. (2024) Visioncamera documentation: Visioncamera, Documentation.
Available at: https://react-native-vision-camera.com/ (Accessed: 19 April 2024).

26

https://jitharijayarathna.medium.com/eye-blink-detection-5d6854520217
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044337/#ref-36
https://sugandsingh5566.medium.com/connecting-a-real-ios-device-to-xcode-for-react-native-development-a-step-by-step-guide-c0e3817a1893
https://sugandsingh5566.medium.com/connecting-a-real-ios-device-to-xcode-for-react-native-development-a-step-by-step-guide-c0e3817a1893
https://react-native-vision-camera.com/

Declaration Form

27

