
1

EasyChef
Design Document

Ronan Green
C00270395

14/02/2025

Contents
Section 1: Introduction .. 2

1.1 Project Overview .. 2

1.2 Document Purpose .. 2

Section 2: System Design .. 3

2.1 System Overview .. 3

2.2 Data Storage Design .. 4

Section 3: Technologies Used .. 5

3.1 Android Studio .. 5

3.2 Koitlin .. 5

3.3 Firebase Firestore ... 5

3.4 CameraX .. 6

3.5 Tensoreflow Lie(Lite RT) ... 7

3.6 TensorFlow/Keras ... 7

3.7 MobileNet.. 8

2

3.8 ZXing .. 8

3.9 Open Food Facts API ... 8

3.10 Spoonacular API ... 9

Section 4: System Architecture .. 9

4.1 Overview of System Architecture .. 9

4.2 Component Architecture ... 10

4.3 Data Architecture .. 11

Section 5: Detailed Use Cases ... 11

Section 6: Critical Algorithms .. 15

6.1 AI-Based Ingredient Identification ... 15

6.2 Recipe Recommendation ... 16

Section 7: Class Diagrams ... 17

7.1 Major Components (User, Recipe, Ingredient, etc.) .. 17

Section 8: UI/UX Design ... 18

Section 9: Security Considerations... 18

9.1 User Data Handling (GDPR compliance) .. 18

9.2 Authentication and Authorization... 19

Section 10: Conclusion ... 19

10.1 Summary of the App Design ... 19

10.2 Next Steps in Development .. 20

Section 1: Introduction

1.1 Project Overview

EasyChef is an Android application designed to help users quickly find tasty recipes.

The app's main feature is ingredient identification through image recognition,

allowing users to take pictures of their ingredients and discover matching recipes.

1.2 Document Purpose

The purpose of this document is to provide a detailed blueprint for EasyChef's
internal design. It covers a wide range of components involved in the system,
including the architecture, technologies, algorithms, diagrams, and designs that are

crucial to the application.

3

This document illustrates the interactions between different system components
using sequence diagrams, class diagrams, and wireframes, providing a detailed

overview of both the UX and database design.

Additionally, it outlines the estimated time required for each section of the
application, the importance of each feature, and potential challenges that may arise

during the development process.

Section 2: System Design

2.1 System Overview

As stated EasyChef is going to be created as an Android Application. The main

features of the application are as follows:

- Image Recognition: Identifies ingredients captured in a photo from the user's

Android device:

o Camera X: Used to take pictures of ingredients at the user's discretion,

providing the image input for identification.

o MobileNet: A pre-trained model (trained on ImageNet and further on

the Food-101 dataset) is used for accurate recognition of ingredients.

Once recognised, the ingredients are added to a list and sent to the

Spoonacular API.

- Recipe Retrieval: Fetches recipes based on the user's inputted ingredients:

o Ingredients for Recipes: Users can add ingredients either manually or

by scanning a barcode:

 ZXing: An open-source barcode scanning library used to scan

barcodes from food items.

 Open Food Facts API: Once a barcode is scanned, it is sent to

the Open Food Facts API to identify the matching ingredient or

food item.

o Spoonacular API: Recognised and inputted ingredients are sent to the

Spoonacular API to find recipes that match the available ingredients.

o Open Food Facts API: Used to retrieve additional information about

ingredients, such as calories, carbohydrates, proteins, etc.

- Shopping List Creation: Allows users to manage the ingredients for their

recipes and suggests items based on previous recipes:

o User Interface: The shopping list is managed through a simple,

intuitive interface where users can easily add, remove, and organise

items.

4

o Component Flow: The app utilises the data layer to fetch previously

identified ingredients and recipes, generating personalised suggestions

for what items to buy.

2.2 Data Storage Design

EasyChef will utilise Firebase as the primary data storage solution to ensure a

reliable and seamless experience for users. The following is covered in the data

storage design:

- Database Type: Firebase will be used as the data storage for EasyChef.

Firebase offers a NoSQL database that is well-suited for storing hierarchical

data like recipes, ingredients, and user information, as well as providing real-

time synchronisation capabilities.

- Data Categories:

o User Data: User profiles, including login information and preferences,

will be securely stored in Firebase using its integrated authentication

service.

o Ingredients and Recipes: All recognised ingredients, manually added

items, and recipe details will be stored in Firebase, enabling efficient

retrieval and updates.

o Shopping Lists: Shopping lists will also be stored in Firebase,

allowing for easy management and access across multiple devices.

- Data Synchronisation: Firebase’s real-time capabilities will ensure that data

is synchronised across devices automatically. This feature allows users to

access and update their data seamlessly.

- Data Security:

o User Authentication: Firebase Authentication will be used to ensure

only authorised users can access their personal information.

o Image Deletion: To ensure privacy, all images used for ingredient

identification will be permanently deleted after processing. This helps

prevent unnecessary storage of user data and adheres to privacy best

practices.

5

Section 3: Technologies Used

3.1 Android Studio

Android Studio: The official IDE for Android development.

 Features:

o Tools for designing, coding, and debugging Android applications.

o Layout Editor: Drag-and-drop layout editor for building UIs efficiently.

o Profilers: Tools for monitoring app performance, memory usage, and

network activity.

 Why It's a Good Choice: Android Studio is the official IDE, packed with

features tailored for Android development. Its deep integration with Android

tools and services makes it the best choice for building, testing, and

optimising the EasyChef app efficiently.

3.2 Koitlin

Kotlin: The main programming language used for developing the EasyChef Android

application.

 Features:

o Concise Syntax: Reduces boilerplate code compared to Java.

o Null Safety: Prevents null pointer exceptions, leading to more robust

applications.

o Interoperability: Fully interoperable with Java, allowing seamless

integration of existing Android components.

 Why It's a Good Choice: Kotlin is officially supported for Android

development and offers a modern, expressive syntax that makes coding

simpler and less error-prone. Its features make the app more maintainable

and reliable.

3.3 Firebase Firestore

Firebase Firestore: A NoSQL cloud database used for storing ingredient history and

scanned items.

 Integration: Integrates directly with Android via SDKs.

6

 Benefits:

o Real-Time Synchronisation: Data is synced across devices in real

time.

o Offline Access: Users can continue managing their ingredients and

recipes even without an internet connection.

o Scalability: The flexible data model is ideal for storing unstructured

data like recipes and user preferences.

 Why It's a Good Choice: Firestore is highly scalable and offers easy

integration with Android, making it suitable for storing recipe data and

managing user interactions seamlessly. Real-time updates ensure the best

user experience, especially for collaborative features like shopping lists.

3.4 CameraX

CameraX is a Jetpack library designed to make the process of integrating camera

features into Android applications easier and more consistent across different

devices.

 Compatibility: Supports Android 5.0 (API Level 21) and higher, ensuring

broad device compatibility. The current version is Android 15.

 Features:

o Preview: View live camera footage on the display.

o Image Analysis: Access image buffers for further processing, such as

ingredient identification.

o Image Capture: Capture still images for use in identifying ingredients.

o Video Capture: Record videos with audio.

 Device Consistency: Overcomes discrepancies between different cameras

by using an automated test lab to standardise camera behaviour.

 Extensions: The Extension API includes features like HDR and night mode,

enhancing the camera's capabilities.

 Why It's a Good Choice: CameraX simplifies camera integration across

devices, minimising compatibility issues and reducing development time. Its

7

modern, easy-to-use interface makes it ideal for a project that heavily relies

on image capturing for ingredient identification.

3.5 Tensoreflow Lie(Lite RT)

TensorFlow Lite is used for running machine learning models on mobile devices.

 Purpose: Optimised for on-device machine learning, TensorFlow Lite allows

models to run without server connections, providing a fast, private, and

reliable experience.

 Key Features:

o Low Latency: Performs inference on-device, avoiding the need for

network connections.

o Privacy: Keeps data on-device, enhancing user privacy.

o Offline Capability: No internet connection is required for using

models.

o Lightweight: Reduces the model size for optimal use on mobile

devices.

 Usage: Models can be trained in TensorFlow and converted to .tflite format, or

existing TensorFlow Lite models can be utilised.

 Metadata: TensorFlow Lite models can include metadata, simplifying pre- and

post-processing pipelines.

 Why It's a Good Choice: TensorFlow Lite is highly efficient for on-device

processing, which is essential for ingredient recognition without relying on

internet access. Its small model size and optimised performance make it

perfect for a mobile-based solution.

3.6 TensorFlow/Keras

TensorFlow/Keras: Used to train a custom machine learning model for ingredient

detection.

 Keras: A user-friendly interface for TensorFlow that simplifies creating and

training machine learning models.

 Features:

o Offers simple, consistent APIs that reduce the complexity of writing ML

models.

o Includes pre-trained models for quick deployment and feature

extraction.

o Tools for data processing, hyperparameter tuning, and deployment.

8

 Why It's a Good Choice: Keras is known for its simplicity and flexibility,

making it an ideal choice for prototyping and training custom ingredient

detection models quickly. The integration with TensorFlow also means that

models can be easily optimised and converted for mobile use.

3.7 MobileNet

MobileNet is a lightweight Convolutional Neural Network (CNN) architecture

designed for mobile and embedded devices.

 Purpose: It is used for image classification and feature extraction with

minimal computational resources.

 Optimisation: Uses depthwise separable convolutions to reduce the

number of parameters and operations, making it lightweight.

 Integration: Can be paired with object detection frameworks, such as Single

Shot Detector (SSD).

 Why It's a Good Choice: MobileNet is specifically designed for mobile

environments, making it highly efficient for running on-device inference. Its

lightweight nature ensures it runs smoothly on smartphones, which is perfect

for real-time ingredient identification.

3.8 ZXing

ZXing ("Zebra Crossing") is an open-source library for barcode scanning.

 Usage: Used to scan 1D/2D barcodes from food items for easy ingredient

input.

 Implementation: Implemented in Java, with ports to other languages, making

it easy to integrate within Android.

 Why It's a Good Choice: ZXing is a well-established barcode scanning

library with broad support and integration options. Its reliability and ease of

use make it suitable for an app that needs to scan barcodes quickly to retrieve

ingredient information.

3.9 Open Food Facts API

Open Food Facts API: A community-driven database providing information on

various food products.

 Purpose: Used to retrieve ingredient details, nutritional values, and other

product information.

 Why It's a Good Choice: Open Food Facts provides a vast amount of data

for free, allowing for rich ingredient and nutritional information to be accessed.

It helps provide accurate nutritional insights to users without additional

development overhead.

9

3.10 Spoonacular API

Spoonacular API: A comprehensive API offering recipe suggestions, ingredient

information, and meal planning tools.

 Features:

o Provides a vast recipe database, ingredient nutritional information,

meal planning, and cost estimation.

o Offers detailed recipes filtered by dietary requirements and allergies.

 Cost: This is a paid service offering advanced features.

 Why It's a Good Choice: Spoonacular's vast recipe database, nutritional

details, and advanced filtering options make it ideal for providing users with

tailored recipe recommendations based on their available ingredients. Its

depth of information and meal planning features make it highly versatile.

Section 4: System Architecture

4.1 Overview of System Architecture

The EasyChef application is designed to provide users with seamless functionality

for identifying ingredients, suggesting recipes, and managing shopping lists. The

system architecture brings together several key components, efficient data

management, and external service integrations, ensuring a well-rounded user

experience. The architecture includes the following main aspects:

1. Core Components:

o The system is composed of several key components such as User

Interaction, Image Processing, Recipe Management, and Data

Storage. These components work together to deliver essential

functionalities like ingredient recognition, barcode scanning, recipe

recommendations, and shopping list management.

2. Data Management:

o Firebase Firestore is used as the primary data storage solution for

storing user information, identified ingredients, shopping lists, and

10

recipe preferences. Data management is designed to ensure real-time

synchronisation across devices while also supporting offline

capabilities for a seamless user experience.

3. Integration with External Services:

o The application integrates with various external APIs to enrich its

functionality:

 Spoonacular API for fetching recipe suggestions based on the

identified ingredients.

 Open Food Facts API for providing detailed nutritional

information.

 ZXing for barcode scanning, allowing users to input ingredients

more easily.

4.2 Component Architecture

The system architecture includes these main components:

 User Interaction:

o Users interact with the app using the camera, chatbot, and manual

input options.

o User selections influence future recipe recommendations through

stored preferences.

 Image Processing:

o CameraX captures images, which are then processed using

TensorFlow Lite.

o The personally trained MobileNet-based model identifies ingredients

within the image.

o If the model struggles to classify an ingredient, users can manually

input the ingredient name.

 Recipe Management:

o Detected ingredients are sent to the Spoonacular API to fetch recipes.

o Users can view recommended recipes, filter them based on dietary

preferences, and save them for future reference.

 Data Storage:

o Firebase Firestore is used to store user data, identified ingredients, and

saved recipes.

o Ingredient data and nutritional information are retrieved from Open

Food Facts API.

o Users’ preferences, past recipe selections, and shopping lists are

stored to personalise recommendations.

11

The interaction between these components is efficient and can be seen below:

 User Interaction -> Image Processing: The user captures an image,

triggering ingredient detection.

 Image Processing -> Recipe Management: Detected ingredients are sent

for recipe retrieval.

 Recipe Management -> Data Storage: Selected recipes and user

preferences are stored for future recommendations.

4.3 Data Architecture

The data architecture is designed to efficiently handle ingredient recognition, recipe

retrieval, and user preferences while ensuring real-time synchronisation across

devices.

Data Categories and Storage Approach

 User Data: Stored in Firebase Firestore, including login credentials,

preferences, and saved recipes.

 Ingredient Data: Identified ingredients are temporarily stored for recipe

retrieval.

 Recipe Data: Recipes are fetched dynamically from Spoonacular API, with

saved recipes stored in Firebase for quick access.

 Shopping List: Managed within Firebase, allowing users to track their

commonly eaten ingredients.

Section 5: Detailed Use Cases

Use Case Name Create Recipe

Unique ID WW015

Actors Users, Database, Spoonacular, AI

Model

Description This use case is initiated when a user

selects create recipe. This feature will

create a new recipe using the AI Model

and the Spoonacular API. It will use like

12

items from the user's liked foods and

will prompt the user for recipe details.

With the information it will display a

recipe the user can save.

Preconditions User is registered and logged in

Trigger The user selects create recipe.

Main Path 1. The user prompts the system to

create the recipe.

2. The recipe uses liked foods and

prompts the user for extra

information to create the recipe.

3. Once the user has input the data

it will use the AI Model and

Spoonacular API to display a

recipe for the user.

4. The user accepts the recipe, and

it gets added to the database for

the user to view.

Post Conditions The user has an added recipe in the

database

Alternative Flows 4a:

4. The user rejects the recipe.

5. The system gets a new recipe

and prompts it to the user.

Use Case Name Take Picture of Ingredient

Unique ID WW016

Actors User, AI Model, Spoonacular API

Description The user opens the camera in the app

and take a picture that include all

relevant ingredients they wish to be a

part of the recipe. The AI Model will

identify the items and search the

Spoonacular API for a relevant recipe.

13

The user is then shown recipes and

they can decide whether they like it or

not. If the user likes the recipe it will be

added to the database.

Preconditions - The user is registered and

logged in.

- The user has given the app

permission to access the

camera.

Trigger The user opens the camera in the app.

Main Path 1. User opens the camera

2. The user takes a picture of the

ingredients they wish to have in

the recipe.

3. The AI Model then recognises

the ingredients identifying each

one and then making a list to

send to the Spoonacular API.

4. The user will get prompted to

take another picture to add more

ingredients

5. The Spoonacular API then

checks for a matching recipe and

then it get displays to the user

6. The user then accepts the recipe

and the recipe gets added to the

database for the user to view.

Post Conditions New recipe is added to the database

Alternative Flows 2a:

2. The user takes a picture of the

barcode.

3. The item then gets checked

against Open Food Facts API.

14

4. The item is temporarily stored,

and the user is prompted to scan

again

3a:

3. The system cannot pick up any

items. This can be due to poor

picture or unclear items.

4. The system prompts the user to

take another picture.

6a:

6. The user rejects the proposed

recipe, and the system then finds

a new one.

Use Case Name Interact with AI Chat Bot

Unique ID WW017

Actors User, AI Model

Description Using the OpenAI API as the base, this

chatbot allows users to interact and talk

about their recipes and shopping lists.

Using the information from the AI Model

(which contains like/dislikes) the chatbot

will be able the help the user achieves

the ideal recipe and shopping lists.

Preconditions The user must be registered and logged

into the system.

Trigger The user selects the AI chatbot

Main Path 1. The user is logged in an has

selected the chatbot.

2. The user prompts the chatbot

with a question(“I want more

protein in my diet”)

3. Using the information provided

by the system, such as user

15

recipes, shopping list,

preferences the chatbot thinks of

a response

4. The chatbot will respond

prompting the user to reply

again. (“A good solution would be

to replace recipe X’s chicken

thighs with chicken breast, would

you like me to make this

change?”)

5. The user accepts this change the

recipe will be updated

accordingly. (“Yes”)

Post Conditions The recipe has been updated in the

database

Alternative Flows 5a. User Rejects Recommendation:

1. The user rejects the chatbot

suggestion and no changes are

made.

Section 6: Critical Algorithms

6.1 AI-Based Ingredient Identification

The AI-Based Ingredient Identification system enables users to take pictures of

ingredients, which are then processed to detect and classify food items. This

functionality is implemented using a trained model built on top of MobilNet in

TensorFlow Lite, optimised for on-device performance.

Process Flow

1. Image Capture

o The user captures an image using CameraX.

o The image is resized to 224x224 pixels for compatibility with the model.

2. Preprocessing

o The image is normalised and converted into a ByteBuffer format.

o The TensorFlow Lite model processes the image to extract key

features.

16

3. Inference

o The model classifies the image, assigning confidence scores to

detected ingredients.

4. Post-processing

o The detected ingredients are mapped to their corresponding labels.

o Users can confirm, or remove detected ingredients.

5. Data Integration

o Confirmed ingredients are temporarily stored in Firebase Firestore.

o The final ingredient list is passed to Spoonacular API..

Challenges and Considerations

 Lighting Conditions – Poor lighting and shadows may impact accuracy.

 Similar Ingredients – Visually similar foods (e.g., cauliflower vs. broccoli)

may require user confirmation.

 Performance Optimisation – TensorFlow Lite ensures low-latency inference

directly on the device.

6.2 Recipe Recommendation

The Recipe Recommendation system suggests recipes based on detected

ingredients using the Spoonacular API. This ensures that users receive relevant

recipes.

Process Flow

1. Ingredient Input

o The ingredient list is retrieved from Firebase Firestore.

o Users can add or remove detected ingredients before proceeding.

2. Recipe Retrieval

o The Spoonacular API is queried with the confirmed ingredients.

o The API returns recipes with ingredients and instructions.

3. Filtering and Ranking

o Recipes are filtered based on user preferences (e.g., dietary

restrictions).

17

o Recipes are ranked based on:

 Ingredient Match % (how many provided ingredients match the

recipe).

 User Preferences (if the user has previously saved or liked

similar recipes).

4. User Interaction

o Suggested recipes are displayed with details.

o Users can:

 Save recipes to their profile.

 Request new recommendations.

 Modify ingredients and regenerate results.

Challenges and Considerations

 Ingredient Substitutions – The system must handle cases where an exact

match isn’t available.

 User Preferences – Ensuring personalised recommendations based on

dietary needs.

Section 7: Class Diagrams

7.1 Major Components (User, Recipe, Ingredient, etc.)

18

Section 8: UI/UX Design

Section 9: Security Considerations

9.1 User Data Handling (GDPR compliance)

The app complies with the General Data Protection Regulation (GDPR) to ensure

user data is handled securely and transparently. The following measures are

implemented:

Data Storage & Retention

 User data (account details, saved recipes, preferences) is stored securely in

Firebase Firestore.

 Ingredient and recipe data are stored temporarily for processing and deleted

once processed.

 Users have the option to delete their account and all associated data upon

request.

Data Encryption & Secure Transmission

19

 User passwords are securely stored using hashed and salted encryption

mechanisms.

9.2 Authentication and Authorization

To protect user accounts and data, EasyChef implements secure authentication and

role-based authorization mechanisms.

Authentication Mechanisms

 Firebase Authentication is used to securely manage user logins.

 Supports email/password authentication.

Authorization & Access Control

 The app follows Role-Based Access Control (RBAC):

o Regular Users: Can access their own saved data, shopping lists, and

preferences.

o Admin (Future Feature): Can manage general app settings and

monitor system performance.

Session Management

 Uses secure session tokens to authenticate users after login.

 Session expiration is implemented to automatically log out users after a period

Section 10: Conclusion

10.1 Summary of the App Design

EasyChef is designed to simplify meal planning through AI-powered ingredient

recognition, recipe recommendations, and shopping list management. Key features

include:

 Ingredient Identification: A custom MobileNet model (TensorFlow Lite) for

real-time detection(Also can be identified by barcode).

 Recipe Recommendations: Retrieves recipes from the Spoonacular API

based on identified ingredients.

 Nutritional Information: Fetched from the Open Food Facts API.

20

 User Authentication: Firebase Authentication ensures secure login and data

protection.

 Shopping Lists: Allows users to add and modify lists using Firebase

Firestore.

10.2 Next Steps in Development

 Integrate Shopping List and Preferences, allowing frequently used ingredients

to be stored and utilized for improved recipe recommendations.

 Implement User Login System using Firebase Authentication.

	Section 1: Introduction
	1.1 Project Overview
	1.2 Document Purpose

	Section 2: System Design
	2.1 System Overview
	2.2 Data Storage Design

	Section 3: Technologies Used
	3.1 Android Studio
	3.2 Koitlin
	3.3 Firebase Firestore
	3.4 CameraX
	3.5 Tensoreflow Lie(Lite RT)
	3.6 TensorFlow/Keras
	3.7 MobileNet
	3.8 ZXing
	3.9 Open Food Facts API
	3.10 Spoonacular API

	Section 4: System Architecture
	4.1 Overview of System Architecture
	4.2 Component Architecture
	4.3 Data Architecture

	Section 5: Detailed Use Cases
	Section 6: Critical Algorithms
	6.1 AI-Based Ingredient Identification
	6.2 Recipe Recommendation

	Section 7: Class Diagrams
	7.1 Major Components (User, Recipe, Ingredient, etc.)

	Section 8: UI/UX Design
	Section 9: Security Considerations
	9.1 User Data Handling (GDPR compliance)
	9.2 Authentication and Authorization

	Section 10: Conclusion
	10.1 Summary of the App Design
	10.2 Next Steps in Development

