Software Fuzzing & Testing

Design Document

Ollscoil
Teicneolaiochta
an Oirdheiscirt
South East
Technological
University

February 2025

Supervisor: Chris Meudec
Student: Jack Foley (C00274246)
A tool used for testing software applications using diverse inputs.

I 1o Yo ¥ o= 4 oY o 3

1.2 PUrpOSE Of DOCUMENL..... .. e e e e e eeeas 3
2 =Y o3 1 4 1 Lo o 1= 3
20t PRSP 3
2.2 TeStCOV (NO IONGEI IN USE)......uiiiiiiiiiiiiiiie ettt 3
B 0o Yo 1= 0 A=Y VT 3
B fUZZ. G ————— 3
B 22 o T o PRSPPSO 4
B0 TR N 1 o 2 4
B (=T oz T T oSSR 4
KRS £= 1 (o[- Y o PP EPPPPP 5
B G I = g T T X PRSP 5
G T e 1= o =1 =1 o F= o3P 5
G TR Tty 01U - 7Y 2PN 5

KR 0T [1= o o PO PPPPR PP 6

1 Introduction

A fuzzer is a tool used in software testing that will automatically create and input a large
amount of random, unusual or unexpected data (called fuzz) into a program. The goal of a
fuzzer is to find as many assert violations, unexpected exceptions, vulnerabilities, crashes
and/or other issues that regular unit testing, coverage testing, condition testing, etc. will not
normally find. It can help discover vulnerabilities and other weaknesses in software.

Since this project is entirely used as a command line tool, there is no user interface to show.
Therefore | will instead give brief overviews of the functions used inside the fuzzer.

1.2 Purpose of Document

The purpose of the design document is to outline the internal structure and functionality of
the fuzzing tool. It will assist in the planning of the project by outlining and defining time
estimates and estimating effort required for the project. The document will describe any
interactions between any form of front end and back end as well as other situations such as
file /0, compilation, etc.

2 Technologies

21C

The main programming language that is being used for this project is the C programming
language. It is a high level, general purpose language that boasts extreme efficiency and
speed if used correctly. | chose this language because of the efficiency and also because the
benchmarks that the fuzzer will be used on are also written in C, so it seems sensible to use
it knowing this.

2.2 TestCov (No longer in use)

TestCov is a testing framework made by SoSy-Lab, who also made the benchmarks
(Test-Comp) for the fuzzing tasks. Since | am creating a coverage-based fuzzer, it makes
sense to include a coverage framework from the creators of the benchmark itself.

3 Code Overview

3.1 fuzz.c

Fuzz.c is the main file for producing the fuzzing inputs for the target files. It has numerous
different input generation techniques that can be used. The current functions are as follows:
- generateRandomNumber ()

- generateSequence()

- generateRandomString()

- generateMutatedString()

- flipBitInString()

- insertCharIntoString()

- removeCharFromString()
It also has implementations for the specific VERIFIER functions that are used in the
benchmarking test from TestComp. At the moment, the only one is
__VERIFIER nondet_int(), which returns a random, non-deterministic integer. The current
implementation just delegates the task to generateRandomNumber ()

3.2 io0.c

lo.c is the main file for handling file operations for the fuzzer, such as creating new folders,
files and writing to files. It only has a handful of functions as of now.

- closeFile(FILE* file)

- openFile(const char* filename)

- writeStringToFile(FILE* file, const char* string)

- openFile(const char* fileName)

- createFolder(const char* basePath, const char* folderName)
- getFullPath(const char* filePath)

- getCurrentTime(void)

- getHash(const char* filePath)

3.3 lex.c

This file is used to initialise the lexical analyser and to call it when it is needed. This is used
to attempt to discover a valid input range for the fuzzer for it to use during runtime.

- generatelLexer()

- lexScanFile(const char* filename)

- extractInputRange(const char* filename)

3.4 testcase.c

This file is used to create a test case that will be then saved as a file in the respective test
suite. These are required for TestCov to produce code coverage reports.
- createTestSuiteFolder(const char* filename)
- getCurrentTime()
- createMetadataFolder(const char* filePath, const char*
filename)
- createTestSuiteAndMetadata()

- createTestInputFile(const int* inputs, size_t num_inputs,
const char* test_suite)

3.5 target.c

This file will be used to perform dynamic compilation and execution of the target file via
system calls.

- compileTargetFile(const char* filePath)

- executeTargetInt(int input)

- cleanupTarget()

3.6 range.c

This file is just used to store a min and max range that can be used across different files.
It contains:

int minRange
int maxRange

3.7 generational.c

This file will be used to handle generational related code. It manages population sizes, the
amount of generations, mutation rates and tournament sizes.

- calculatePlaceholderFitness(int input_value, int min_range,
int max_range)

- selectParent(Individual population[], int population_size)

- mutateInteger(int original_value, int min_range, int
max_range)

- getNextPopulationIndex(int population_size)

- generateNewPopulation(Individual population[], int
population_size, Individual next_generation[], int min_range,
int max_range)

- initializePopulations(void)

- cleanupPopulations(void)

3.8 corpus.c

This file will be used to handle any work to do with the corpus, a large text document used to
store the inputs for fuzzing.
- createCorpus(char* path);

- selectRandomValueFromCorpus(char* path);

- addValueToCorpus(char* path, int value);
- removeValueFromCorpus(char* path, int value);
- validateCorpusContent(char* path);

3.9 logger.c

This file is a basic utility file for logging purposes. It can be used anywhere in the project.
- app_log(const char* level, const char* message);
- app_log_with_value(const char* level, const char* message,
const char* format, ...);

	Software Fuzzing & Testing
	
	
	1 Introduction
	1.2 Purpose of Document

	2 Technologies
	2.1 C
	2.2 TestCov (No longer in use)

	3 Code Overview
	3.1 fuzz.c
	3.2 io.c
	3.3 lex.c
	3.4 testcase.c
	3.5 target.c
	3.6 range.c
	3.7 generational.c
	3.8 corpus.c
	3.9 logger.c
	

