

Software Fuzzing & Testing

Functional Specification

December 2024

Supervisor: Chris Meudec
Student: Jack Foley (C00274246)

A tool used for testing software applications using diverse inputs.

1 Introduction... 3

1.1 Purpose of Specification...3
2 Problem Statement... 3
3 Project Scope.. 3

3.1 Goal..3
3.2 Target Audience... 4

4 Requirements.. 4
4.1 Functionality... 4

Platform Compatibility.. 4
Language and Library.. 4
Unix Compatibility...5
Code Coverage Maximisation.. 5

4.2 Usability..5
User Interface and Usability... 5

4.3 Reliability.. 5
4.4 Performance...6
4.5 Supportability..6
4.6 Approach.. 6

References..7

1 Introduction
A fuzzer is a tool used in software testing that will automatically create and input a
large amount of random, unusual or unexpected data (called fuzz) into a program.
The goal of a fuzzer is to find as many assert violations, unexpected exceptions,
vulnerabilities, crashes and/or other issues that regular unit testing, coverage testing,
condition testing, etc. will not normally find. It can help discover vulnerabilities and
other weaknesses in software.

Although many fuzzers are focused on finding the bugs and crashes I
mentioned above, the fuzzer that I will be making is mostly a coverage based fuzzer
with the sole purpose of obtaining the largest amount of code coverage on a problem
file as possible. This fuzzer will intelligently introduce new input based on previous
results via a ‘generational algorithm.’

1.1 Purpose of Specification
This specification is designed to outline all of the functional and non-functional
requirements that will be in the software. Since the concept of a fuzzer is a single
CLI tool with a single task, the functional and non-functional requirements of this
software will be relatively short and simple.

2 Problem Statement
Creating tests for software testing is a slow but necessary process. It is common for
software engineers and developers to dislike the process of writing tests and achieve
sufficient code coverage when they would rather be writing useful code. A fuzzer is a
tool that they can use to automate the process of testing their code by generating
random inputs to try and break the software in unexpected ways. The fuzzer serves
as an alternative, but not absolute, solution to easy software testing.
​ Another issue is that achieving deep code coverage through manual testing is
a labour intensive and time consuming process. It is common that developers may
struggle to reach all execution paths in a file, thus leading to untested code that
could introduce potential issues further down the line. This fuzzer will automate the
process of increasing code coverage through efficient testing methods such as
generational algorithms.

3 Project Scope

3.1 Goal
The main goal of a software fuzzer would be to, by itself, find vulnerabilities, edge
cases, and surprising behaviours of the target software by generating a large
number of random, malformed, or semi-valid inputs. The fuzzer's aim is to improve

the robustness, security, and stability of the software by catching issues like crashes,
memory corruption, buffer overflows, or any security flaw at an early stage in the
development life cycle. This reduces the risk of these vulnerabilities being exploited
in production. It should integrate easily into the testing pipeline and provide
actionable insights for remediation by developers and security teams.

3.2 Target Audience
The use of a fuzzer is not limited to one or two target audiences. It can be narrowed
down into a few categories. It will mostly suit those who wish to achieve higher code
coverage on their software.

QA Engineers / Test Engineers: Those involved in software robustness testing to
ensure the application does not crash or misbehave in cases of unexpected or
invalid inputs. They increase coverage with fuzzers and automate stress tests.

Software Developers: The developers integrate fuzzing tools into their test
frameworks to find those bugs or edge cases that other forms of testing may not be
able to locate. This demographic is particularly interested in the early detection of
vulnerabilities within the development phase.

Some roles may use a fuzzer as much, especially if it is a coverage based fuzzer,
such as the following.

Security researchers: Professionals who focus on discovering vulnerabilities within
software applications. They make use of fuzzers, which allow the automation of
detecting security inefficiencies that may include buffer overflows and memory leaks
in software applications.

Penetration Testers: Ethical hackers, normally assess the security posture of
systems through simulating cyberattacks. They use fuzzers to automate the process
of generating malformed inputs to study the responses of a system or application to
such inputs.

Compliance Teams: These teams are in charge of ensuring the software matches
specific criteria on security and robustness. To ensure that the software aligns with
applicable regulations, standards, or certifications, they use fuzzers.

4 Requirements

4.1 Functionality

Platform Compatibility
Since it depends on the GNU C library, the fuzzer must be run on a Unix-like system,
for instance, on Linux or macOS. Other operating systems, such as Windows, are
not supported simply because they do not provide native support for the GNU C
library or system calls originally from Unix.

Language and Library
This will be implemented in the C programming language. Besides that, the GNU C
library as a standard library will be used to enable low-level system calls. The reason
behind choosing C and the GNU C library is that they offer advantages regarding
performance and thus so far form the basis for efficient system-level tool
development under Unix variants. Similarly, the presence of the GNU C library within
an implementation allows for proficient interaction with the Unix kernel, where
memory management, file input/output, and threading operations take place-a
necessary requirement for lots of operations of the fuzzer.

Unix Compatibility
The fuzzer is incompatible with non-Unix systems due to the inexistence of
equivalents for the GNU C library and its system calls in the Windows world, for
instance. In case a Windows-based environment has to be supported, considerable
porting effort would be needed, including using alternative libraries such as mingw or
cygwin, which is beyond the scope of this project.

Code Coverage Maximisation
It should be able to generate new inputs based on the previous results from other
code coverage reports in an effort to increase code coverage for future tests. It
should be able to generate a diverse range of inputs to ensure maximal code
coverage is being achieved.

4.2 Usability

User Interface and Usability
The fuzzer should take a problem file as an input and it should run fuzzing test input
on this file, producing code coverage reports on the file and displaying the output as
a graph showing coverage percentage over numerous different tests.

Dependencies:
GNU C library: This is used for system calls, process control, memory management,
and threading for Unix-based systems.
C Compiler (gcc): In order to compile the fuzzer. Unix-based environment.

4.3 Reliability
The fuzzer should be able to find defects, crashes, and vulnerabilities in target
software in some cases, given enough time. Since the nature of a fuzzer is random
and non-deterministic, it could detect an issue immediately one time but take an hour
to detect the same bug the next time, but the main point is that it still detects it. The
tool should reduce the number of false positives by verifying every potential bug
against known patterns or re-running test cases to confirm reproduction.

The fuzzer shall handle some of the errors occurring in runtime of its execution, for
example, crashes of the target program or memory overflows; it should never crash
itself.
Any test results found in failures or anomalies should be kept in a reliable and
durable format, such that if anything happens to any system or tool crashing,
information is not lost.
It would mean that the fuzzer, in the case of any target program failure, has to keep
on executing any subsequent case of input without disruption to the fuzzing process.

The fuzzer should be able to improve upon its code coverage score incrementally as
it uses generational algorithms to create better inputs based on older code coverage
results.
The fuzzer should perform reasonably well within the results of Test-Comp. This will
act as a way to measure the effectiveness of the tool vs. other fuzzing tools, such as
American Fuzzy Lop (AFL) [1], a “state of the art” fuzzer.

4.4 Performance
Fine-tuning is required for a fuzzer to be effective, meaning generating test cases
and processing the results as fast as possible to extend input space coverage for a
given, usually quite limited, period of time.

It should be able to use system resources correctly: optimise CPU and memory in
such a way that it could run several on multi-core and grow by using multi-threading
or distribution.
A performance benchmark needs to be set. For instance, the number of test cases it
can generate in one second or the maximum time taken to execute on any given
input.

https://test-comp.sosy-lab.org/2024/results/results-verified/

The generation of inputs should focus on edge cases, try to maximise the
possibilities of generating hard-to-detect bugs, without overwhelming the system with
inputs it will not use.
It should also not be hungry for memory or CPU, lest it interfere with the execution of
the subject software, or other uses from the system.

Since the fuzzer will also be generating test case files for TestCov, this is a major
bottleneck that needs to be considered. It is a possibility that this work could be
handled by a separate thread while the fuzzer continues to run on its own thread, but
it could pose some potentials issues with timing.

4.5 Supportability
It should be maintainable, easy to understand and modular so any developer can
contribute by adding the functionality of new input formats or a test case generation
strategy.
It will be fully documented on setup and usage, supported arguments and
configuration options, and how to read the output.

4.6 Approach
The approach that I aim to take with this fuzzer is to use a combination of random
fuzzing, mutation based fuzzing and coverage based fuzzing. These all fall under the
category of either black-box or grey-box fuzzing, which are two of the three major
types of fuzzing, with the other one being white-box fuzzing.

The fuzzer should be able to perform static analysis on a target file in an attempt to
find valid inputs and then, using those inputs, produce test cases for the file and
produce code coverage reports. It should then be using those reports to create
better, valid inputs to enhance code coverage further.
​

References
1.​ Wikipedia. (2024). American Fuzzy Lop (software). [online] Available at:

https://en.wikipedia.org/wiki/American_Fuzzy_Lop_(software) [Accessed 25 Oct.

2024].

https://en.wikipedia.org/wiki/American_Fuzzy_Lop_(software)

	
	Software Fuzzing & Testing
	1 Introduction
	1.1 Purpose of Specification

	2 Problem Statement
	3 Project Scope
	3.1 Goal
	3.2 Target Audience

	4 Requirements
	4.1 Functionality
	Platform Compatibility
	Language and Library
	Unix Compatibility
	Code Coverage Maximisation

	4.2 Usability
	User Interface and Usability

	4.3 Reliability
	4.4 Performance
	4.5 Supportability
	4.6 Approach

	References

