
Fuzzer Research
Jack Foley

October 14, 2024

1 Introduction..2
2 Fuzzing...2

2.1 White-Box Fuzzing... 2
2.2 Black-Box Fuzzing..3
2.3 Grey-Box Fuzzing...3

3 Techniques Deep Dive...4
3.1 Random Input Fuzzing... 4
3.2 Mutation Based Fuzzing...4
3.3 Coverage Guided Fuzzing..4

4 Benchmarking Overview.. 5
4.1 Competitions.. 5

4.1.1 Test-Comp... 5
4.1.2 SV-Comp... 5

5 References..6

1

1 Introduction
This document will outline the research undertaken for the 4th Software
Development Final Year Project (FYP). This project was proposed by Dr. Chris
Meudec and focuses on developing a fuzzer for the C programming language.

2 Fuzzing
Fuzzing is a method of testing software by using broken, random or un-
usual data as an input into the software which is being tested. The idea of fuzzing is
that it will find bugs and other issues, including memory spikes and leaks (temporary
denial-of-service), buffer overruns (remote code execution), unhandled exceptions,
read access violations (AVs), and thread hangs (permanent denial-of-service). These
are issues that traditional software testing methods, such as unit testing, will not find
as easily. There are some different types of fuzzing, such as white-box, grey-box and
black-box fuzzing [3].

2.1 White-Box Fuzzing
White-Box fuzzing, also known as smart fuzzing, is a technique that is used
where the fuzzer is fully aware of the code structure and input variables. white-box
fuzzing often leads to discovering bugs more quickly compared to grey-box and
black-box fuzzing, but it can also be more computationally expensive as it needs to do
an analysis of the codebase before running.
 An example of a well known white-box fuzzer is SAGE [9], a white-box fuzz
testing tool used for finding bugs in security vulnerabilities of software applications. It
was designed by Microsoft Research. Unlike traditional black-box fuzzing that
generates random inputs without any idea about program structure, SAGE analyses
all possible code paths of the program using symbolic execution. Thus, SAGE creates
inputs systematically in order to explore a lot of execution paths. This exposes bugs
missed by other testing techniques.

A case study done during development of ISA Server 2006 showed that
one defect was found per 17 KLOC (thousand lines of code), a similar black-
box fuzzer only found 30% of the defects that the white-box fuzzer found [3].

2

2.2 Black-Box Fuzzing
Black-Box fuzzing is a technique used to test software, analysing the software by
sending random data to the software to discover an application’s bugs and
vulnerabilities. The black-box fuzzer does not have any information about the
inner-workings of the software, it only knows the input and output of the software.
It is a sought-after testing technique as it will work in applications regardless of the
programming language or the platform that the software is running on [1].
 A black-box fuzzer can typically get information about what the input to the
fuzz target is through some of the following methods:

- Protocol Specifications: If the fuzz target follows well known protocol
standards such as HTTP or HTTPS, the fuzzer will create inputs that are based
on the HTTP protocol.

- Sample Inputs (Seed Files): black-box fuzzers will often start with a set of
known valid inputs, also known as seed inputs. These inputs are then
manipulated after each subsequent test execution. Some well known fuzzers,
such as American Fuzzy Lop (AFL) use this method to improve code coverage
during fuzz testing [10].

- Dynamic Analysis and Learning: Some sophisticated fuzzers interpret the
application's responses to random inputs as a means to infer the structure of
the expected inputs. This may include the capability of the fuzzer to learn from
how the application was processing previous inputs, adaptively refining its test
cases. For example, the Snipuzz framework uses message snippet inference to
guide its fuzzing process [11].

2.3 Grey-Box Fuzzing
Grey-Box fuzzing is a well-known and commonly used fuzzing technique that is used
for testing software and finding vulnerabilities. Differing from white-box fuzzing,
which can suffer from high computational needs since source code analysis is
required, grey-box fuzzing is a very good middle-ground between white-box and
black-box fuzzing [4].

Grey-Box fuzzing can also receive coverage feedback from the software,
which can then be used to more efficiently traverse the software’s codebase
to find bugs and vulnerabilities [2].

3

3 Techniques Deep Dive

3.1 Random Input Fuzzing
The simplest implementation of a Fuzzer is a Random Fuzzer. This type of Fuzzer will
generate a random string at a fixed or variable length which will then be used as the
input for the software which we are testing. The method of random fuzzing is
extremely efficient [13], but may struggle at producing inputs that do not cause errors
[6].
Examples of random fuzzing would be: *&322h2k,b&(Gb2\|q&@ih

3.2 Mutation Based Fuzzing
Instead of generating completely random strings, we can use mutation based fuzzing.
Most randomly generated inputs are always invalid, which is not ideal. Mutation
Fuzzing will take a valid input at first, then with each subsequent execution, it will
change, or mutate, the string slightly. This mutation is usually done by modifying one
random character in the input. This approach is popular with fuzzing as it may cause
the program to crash while only changing the input slightly, which is difficult to
achieve with traditional testing [7].

Examples of mutation fuzzing would be:
• Original Input: Hello World
• Mutated Input 1: Hello Wzrld
• Mutated Input 2: Hell1 Wzrld
• Mutated Input 3: H;ll1 Wzrld
• ...
• Mutated Input N: Fr’1?.tOP4+

3.3 Coverage Guided Fuzzing
Coverage based fuzzing will trace back the code coverage reached by each input fed
to a program. The fuzzing engine will then decide which section of the next input
should be modified (or mutated) to achieve the maximum amount of code coverage
within its next test.

4

4 Benchmarking Overview

4.1 Competitions

4.1.1 Test-Comp
Test-Comp (TC) is an annual international competition that focuses on determining
the technological level of advanced software testing tools. The competition is made to
do the following:

- Assess the state of current automated software testing.
- Give recognition to the developers of these tools by providing a platform for

them.
- Create a thorough set of benchmarking standards for software testing.

Users are given a set of standardised benchmark programs that they can use during a
training phase to prepare their tools. In the subsequent evaluation phase, these tools
are executed on specific test tasks to measure their effectiveness in bug detection,
code coverage, and runtime performance. The competition is organised and
presented by the Test-Comp competition chair [12].

4.1.2 SV-Comp
SV-Comp (SVC) is a software verification benchmark website. It runs an annual
competition to test various different software verification tools which can be used in
the software development lifecycle. It is mostly used to prove the correctness of a
software verification tool while following formal specifications, but it seems that there
are some fuzzers used in the competition. SVC does not seem like it will be a good
candidate for testing the fuzzer as it is mostly used for the testing of verification tools,
not fuzzers. A better alternative is Test-Comp, a software testing competition that is
run by the same people who run SVC, but has a higher focus on software testing tools,
including fuzzers, rather than software verification tools.

5 Static Code Analysis

5.1 Flex
Flex [14] (Fast lexical analyser generator) is an open-source alternative to lex, another
lexical analyser. Its sole purpose is to generate lexical analysers that can be used to

5

find specific symbols in large files as quickly as possible. Since we are working with
defined problem files from an official benchmark, we can look for certain variable
names that should show up somewhere in the problem files. Using the lexer, we can
find how these symbols and/or variables are being used in the problem file and then
using that information we can create the correct and expected inputs from the fuzzer.

6

5 References
1. Aseel Alsaedi, Abeer Alhuzali, and Omaimah Bamasag. “Effective and scalable

black-box fuzzing approach for modern web applications”. In: Journal of King
Saud University - Computer and Information Sciences 34.10, Part B (2022), pp.
10068–10078. issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2022.10.006.

2. Blackwell, D. and Clark, D. (2024). PrescientFuzz: A more effective exploration
approach for grey-box fuzzing. [online] arXiv.org. Available at:
https://arxiv.org/abs/2404.18887 [Accessed 28 September. 2024].

3. J. Neystadt. Automated penetration testing with white-box fuzzing. Microsoft
Learn. Available at:
https://learn.microsoft.com/en-us/previous-versions/software-testing/cc16278
2(v=msdn.10)?redirectedfrom=MSDN (Accessed: 28 September 2024). 2009.

4. Van-Thuan Pham et al. “Smart Greybox Fuzzing”. In: IEEE Trans-actions on
Software Engineering 47.9 (2021), pp. 1980–1997. doi:10.1109/TSE.2019.2941681.

5. Wikipedia contributors. Fuzzing — Wikipedia, The Free Encyclopedia.
[Online;accessed 6-October-2024]. 2024. Url:
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1249540069.

6. Andreas Zeller et al. “Fuzzing: Breaking Things with Random Inputs”. In: The
Fuzzing Book. Retrieved 2024-06-29 17:55:20+02:00. CISPA Helmholtz Center
for Information Security, 2024. url:
https://www.fuzzingbook.org/html/Fuzzer.html.

7. Andreas Zeller et al. “Mutation-Based Fuzzing”. In: The FuzzingBook.
Retrieved 2024-06-29 18:18:06+01:00. CISPA Helmholtz Center for
Information Security, 2023.
Url:https://www.fuzzingbook.org/html/MutationFuzzer.html.

8. ClusterFuzz. (2024). Coverage guided vs blackbox fuzzing. [online] Available at:
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
[Accessed 20 Oct. 2024].

9. queue.acm.org. (n.d.). SAGE: Whitebox Fuzzing for Security Testing - ACM
Queue. [online] Available at: https://queue.acm.org/detail.cfm?id=2094081.
[Accessed 4 Nov. 2024].

7

https://doi.org/10.1016/j.jksuci.2022.10.006
https://arxiv.org/abs/2404.18887
https://learn.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)?redirectedfrom=MSDN
https://doi.org/10.1109/TSE.2019.2941681
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1249540069
https://www.fuzzingbook.org/html/Fuzzer.html
https://www.fuzzingbook.org/html/MutationFuzzer.html
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox/
https://queue.acm.org/detail.cfm?id=2094081

10. Wikipedia Contributors (2024). American Fuzzy Lop (software). Wikipedia.
Available at:
https://en.wikipedia.org/wiki/American_Fuzzy_Lop_%28software%29
[Accessed 4 Nov. 2024].

11. Feng, X., Sun, R., Zhu, X., Xue, M., Wen, S., Liu, D., Nepal, S. and Xiang, Y. (2021).
Snipuzz: Black-box Fuzzing of IoT Firmware via Message Snippet Inference.
[online] arXiv.org. Available at: https://arxiv.org/abs/2105.05445 [Accessed 4
Nov. 2024].

12. Sosy-lab.org. (2022). Test-Comp 2022 - 4th International Competition on
Software Testing. [online] Available at:
https://test-comp.sosy-lab.org/2022/rules.php [Accessed 4 Nov. 2024].

13. Gopinath, R. and Zeller, A. (2019). Building Fast Fuzzers. [online] arXiv.org.

Available at: https://arxiv.org/abs/1911.07707 [Accessed 8 Nov. 2024].

14. Wikipedia Contributors (2024). Flex (lexical analyser generator). Wikipedia
[Accessed 1 Dec. 2024].

8

https://en.wikipedia.org/wiki/American_Fuzzy_Lop_%28software%29
https://arxiv.org/abs/2105.05445
https://test-comp.sosy-lab.org/2022/rules.php
https://arxiv.org/abs/1911.07707

	Fuzzer Research
	1 Introduction
	2 Fuzzing
	2.1 White-Box Fuzzing
	2.2 Black-Box Fuzzing
	2.3 Grey-Box Fuzzing

	3 Techniques Deep Dive
	3.1 Random Input Fuzzing
	3.2 Mutation Based Fuzzing
	3.3 Coverage Guided Fuzzing

	4 Benchmarking Overview
	4.1 Competitions
	4.1.1 Test-Comp
	4.1.2 SV-Comp

	5 Static Code Analysis
	5.1 Flex
	5 References

